
Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 1

Advanced

programming in Java

Ing. Marek Běhálek
katedra informatiky FEI VŠB-TUO

A-1018 / 597 324 251

http://www.cs.vsb.cz/behalek
marek.behalek@vsb.cz

Overview

 Generics

 Java Collections Framework

 Reflection

 Annotations

 Serializations

 Streams in Java

 Thread and Synchronization

Advanced programming in Java

Generics - Compare

List li = new ArrayList();
li.add(new Integer(1));
Integer x = (Integer)li.get(0);

List<Integer> li = new ArrayList<Integer>();
li.add(new Integer(1));
Integer x = li.get(0);

 The main point: “old” containers hold “Object” objects
and need casts which are problematic because:

 Cast is something the programmer thinks is true at a
single point.

 Generic type is true everywhere.

Advanced programming in Java

Generics - What Generics in

Java are?

 A way to control a class type definitions.
 Otherwise known as parameterised types or

templates.
 A way of improving the clarity of code
 A way of avoiding (casts) in code, turning run-

time errors (typically ClassCastException) into
compile-time errors. This is A Good Thing.

 Benefits of generic types
 increased expressive power
 improved type safety
 explicit type parameters and implicit type casts

 Only in Java 5 and above

Advanced programming in Java

http://www.cs.vsb.cz/behalek
http://www.cs.vsb.cz/behalek
http://www.cs.vsb.cz/behalek

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 2

Generics – Definition of

Generics

interface Collection<A> {
public void add (A x);
public Iterator<A> iterator ();

}
class LinkedList<A> implements Collection<A> {

protected class Node {
A elt;
Node next = null;
Node (A elt) { this.elt = elt; }

}
...

}

 type variable = "placeholder" for an unknown type
 similar to a type, but not really a type

 several restrictions
 not allowed in new expressions, cannot be derived from, no class literal, ...

Advanced programming in Java

Generics – Type parameter

bounds

public interface Comparable<T> { public int compareTo(T arg); }

public class TreeMap<K extends Comparable<K>,V> {
private static class Entry<K,V> { ... }
private Entry<K,V> getEntry(K key) {

while (p != null) {
int cmp = k.compareTo(p.key);

… }
…
}

…

 bounds = super-type of a type variable
 purpose: make available non-static methods of a type variable

 limitations: gives no access to constructors or static methods

Advanced programming in Java

Generics – Generics and sub-

typing

 Should this be valid?

 In other words: is List<String> a subtype of

List<Object> ?

 The answer is NO!

 But inheritance is a powerful tool, and we want
to use it with generics…

Advanced programming in Java

List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
//…
lo.add(new Object());
String s = ls.get(0);

Generics – Example: Statistics

class

public class Stats<T> {
T[] nums; // nums is an array of type T

Stats(T[] o) {
nums = o;

}

// Return type double in all cases.
double average() {
double sum = 0.0;

for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue(); // Error!!!

return sum / nums.length;
}

}

Advanced programming in Java

•This class gets an array of numbers and calculates

their average.

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 3

Generics – Example: Statistics

class

public class Stats <T extends Number> {
T[] nums; // nums is an array of type T

Stats(T[] o) {
nums = o;

}

// Return type double in all cases.
double average() {
double sum = 0.0;

for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue(); // now it’s OK.

return sum / nums.length;
}

}

Advanced programming in Java

•To solve the problem we will use a bounded type.

Number

Integer

Long

Double

Generics - Using generic types

(1)

 Can use generic types with or without type

argument specification

 with concrete type arguments

 concrete instantiation

 without type arguments

 raw type

 with wildcard arguments

 wildcard instantiation

Advanced programming in Java

Generics - Using generic types

(2)

 Concrete instantiation
 type argument is a concrete type

void printDirectoryNames(Collection<File> files) {
for (File f : files)

if (f.isDirectory())
System.out.println(f);

}

 more expressive type information
 enables compile-time type checks

 Raw type
 no type argument specified

 permitted for compatibility reasons
 permits mix of non-generic (legacy) code with generic code

Advanced programming in Java

Generics – Wildcards (1)

 What is the problem with this code?

void printCollection(Collection<Object> c){
for (Object o : c)

System.out.println(o);
}

 Collection<Object> is NOT a supertype of any other collection.
 this code is not so usefull…

 The solution: wildcards:

void printCollection(Collection<?> c){
for (Object o : c)

System.out.println(o);
}

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 4

Generics – Wildcards (2)

 A wildcard denotes a representative from a
family of types

 unbounded wildcard - ?
 all types

 lower-bound wildcard - ? extends Supertype
 all types that are subtypes of Supertype

 upper-bound wildcard - ? super Subtype
 all types that are supertypes of Subtype

Advanced programming in Java

Generics - Bounded wildcard,

Stats revisited

public class Stats{

static double average(List<? extends Number> nums) {
double sum = 0.0;

for (Number num : nums)
sum += num.doubleValue();

return sum / nums.size();
}

public static void main(String args[]) {
Integer inums[] = { 1, 2, 3, 4, 5 };
//List<Number> li1 = Arrays.asList(inums); //compilation error

//List<? extends Number> li2 = Arrays.asList(inums); //ok

List<Integer> li = Arrays.asList(inums);
System.out.println(average(li)); //prints 3.0 }

}

Advanced programming in Java

Generics – Generic methods

 the avarage() method signature:

static double average(List<? extends Number> nums)

 An alternative (equivalent) signature:

static <T extends Number> double average(List<T> nums)

 The later is called a generic method.

 Which is better?
 When there are no dependencies between the method

parameters - use wildcards.

Advanced programming in Java

Generics – Calculating the

median

public class Stats{

static double average(List<? Extends number> nums) { …}

static <T extends Number> T median(List<T> nums) {
int pos = nums.size()/2;
return nums.get(pos);

}

public static void main(String args[]) {
Integer inums[] = { 0, 0, 0, 0, 100};
List<Integer> li = Arrays.asList(inums);
System.out.println(average(li));
System.out.println(median(li));

}
}

Advanced programming in Java

This way the compiler knows about the dependency

between the input and output arguments.

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 5

Generics – Another generic

method examples

static <T, V extends T> boolean isIn(V x, T[] y) {

for(int i=0; i < y.length; i++)

if(y[i].equals(x)) return true;

return false;

}

Advanced programming in Java

Determine if an object is in an array:

public static <T extends Comparable<? super T>> void sort(List<T> list) {

…

}

Collections.sort()

Generics – Java Generics

Implemetation

 There are two general approaches:
 Code specialisation – generate a version of the class for each

way it‟s used (what C++ does)

 Code sharing – use a single version of the class for all uses, but
perform checks as each use occurs (what Java does)

 The Java compiler uses type erasure to (effectively)
translate generic code into pre-generic code by:
 Replacing every use of a formal type parameter by a use of the

most general type it could be in context (trivially, Object)

 This means that code compiled with Java 5 can be run
by a Java 1.4 Virtual machine – there‟s no change to
the Java bytecode.

Advanced programming in Java

Generics – What will be the

value of res?

List <String> l1 = new ArrayList<String>();

List<Integer> l2 = new ArrayList<Integer>();

Boolean res = (l1.getClass() == l2.getClass());

Advanced programming in Java

Answer: true

Explanation: after erasure both l1 ans l2

have the run-time type ArrayList

Generics – Generic usage

mistakes

class MyGenClass<T, V> {

T ob1;

V ob2;

// These two overloaded methods

are ambiguous...

void set(T o) {

ob1 = o;

}

void set(V o) {

ob2 = o;

}

}

Advanced programming in Java

class Gen<T> {

T ob;

Gen() {
//Can't create an instance of T...

ob = new T();

}

}

public class Wrong<T> {
// Wrong, no static variables of type T.

static T ob;

// Wrong, no static method can use T.

static T getob() {

return ob;

}

http://java.sun.com/javase/6/docs/api/java/lang/Comparable.html
http://java.sun.com/javase/6/docs/api/java/util/List.html

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 6

Generics – What will be

printed?

class Gen<T> {

T ob;

Gen(T o) { ob = o; }

T showType() {

println("Type of T is “+ob.getClass().getName());

for (Method meth : this.getClass().getDeclaredMethods())

println(meth.toString());

return ob;

}

public static void main(String args[]) {

Gen<Integer> iOb = new Gen<Integer>(88);

//String s = iOb.showType(); //compilation error...

Integer i= iOb.showType();

}

}

Advanced programming in Java

Answer:

Type of T is java.lang.Integer

java.lang.ObjectGen.showType()

Collection Framework –

General Description

 A collection (called a container in C++) is an
object that groups multiple elements into a
single unit.

 Collections are used to store, retrieve and
manipulate data, and to transmit data from
one method to another.

 Collections hold:
 a specific data type;

 a generic data type.

Advanced programming in Java

Collection Framework –

General Description

 A collections framework is a unified architecture
for representing and manipulating collections. It
has:
 Interfaces: abstract data types representing collections

 Allow collections to be manipulated independently of the
details of their representation.

 Implementations: concrete implementations of the
collection interfaces
 Reusable data structures

 Algorithms: methods that perform useful
computations, such as searching and sorting
 These algorithms are said to be polymorphic: the same

method can be used on different implementations.

 Reusable functionality

Advanced programming in Java

Collection Framework – Why

Use It?

 There are many benefits to using the Java

Collections Framework:

 Reduces programming effort.

 Increases program speed and quality.

 Allows interoperability among unrelated APIs.

 Reduces the effort to learn and use new APIs.

 Reduces effort to design new APIs.

 Fosters software reuse.

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 7

Collection Framework –

Interfaces

 An interface describes a set of methods:
 no constructors or instance variables

 Interfaces must be implemented by classes

 2 or more classes implement an interface
 Classes guaranteed to have the same methods

 Objects can be treated as the same type

 Can use different algorithms / instance variables

 Collection is actually an interface

Advanced programming in Java

Collection Framework –

Collections Interfaces

Advanced programming in Java

Queue
since Java 5

Collection Framework –

Collection Interfaces

 Collection - a group of objects, called elements
 Set - an unordered collection with no duplicates

 SortedSet - an ordered collection with no duplicates

 List - an ordered collection, duplicates are allowed

 Queue -linear sequence of items “for processing”
 Can add an item to the queue

 Can “get the next item”from the queue

 What is “next”depends on queue implementation

 Map - a collection that maps keys to values
 SortedMap - a collection ordered by the keys

 Note
 Some collections requires elements to be comparable

 Must be able to say an element is “less than”or “greater than”another
element

 There are are two distinct hierarchies

 We can use generics!

Advanced programming in Java

Collection Framework –

Algorithms

 Java has polymorphic algorithms to provide

functionality for different types of

collections

 Sorting (e.g. sort)

 Shuffling (e.g. shuffle)

 Routine Data Manipulation (e.g. reverse, addAll)

 Searching (e.g. binarySearch)

 Composition (e.g. frequency)

 Finding Extreme Values (e.g. max)

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 8

Collection Framework –

Implementation (1)

 Multiple implementations of each interface
 All provide same basic functionality

 Different storage requirements

 Different performance characteristics

 Sometimes other enhancements too

 e.g. additional operations not part of the interface

 Java API Documentation gives the details!
 See interface API Docs for list of implementers

 Read API Docs of implementations for
performance and storage details

Advanced programming in Java

Collection Framework –

Implementation (2)

 A collection class
 implements an ADT as a Java class

 can be instantiated

 Java implements interfaces with
 List: ArrayList, LinkedList, Vector, Stack…

 Map: HashMap, TreeMap…

 Set: TreeSet, HashSet…

 Queue: PriorityQueue

 All Collection implementations should have two
constructors:
 A no-argument constructor to create an empty collection

 A constructor with another Collection as argument

 If you implement your own Collection type, this rule cannot be
enforced, because an Interface cannot specify constructors

Advanced programming in Java

Collection Framework –Collections

and Java 1.5 Generics

 Up to Java 1.4, collections only stored Objects

LinkedList points = new LinkedList();

points.add(new Point(3, 5));
Point p = (Point) points.get(0);

 Casting everything gets annoying.

 Could add non-Point objects to points collection too!

 Java 1.5 introduces generics

LinkedList<Point> points = new LinkedList<Point>();

points.add(new Point(3, 5));
Point p = points.get(0);

 No more need for casting.

 Can only add Point objects to points too.

 Type checking at a compile time.

Advanced programming in Java Advanced programming in Java

Iterable<E>

ArrayList<E>

Collection<E>

Set<E> Queue<E> List<E>

SortedSet<E> PriorityQueue<E>

HashSet<E>

EnumSet<E>

LinkedHashSet<E>

TreeSet<E>

LinkedList<E>

Iterator<E>

ListIerator<E>

EnumMap<K,V>

Map<K,V>

WeakHashMap<K,V>
SortedMap<K,V>

TreeMap<K,V>

HashMap<E>

LinkedHashMap<K,V>

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 9

Collection Framework – The

Collection Interface

 The Collection Interface
 The basis of much of the collection

system is the Collection interface.

 Methods:
 public int size()

 public boolean isEmpty()

 public boolean contains(Object elem)

 public Iterator<E> iterator()

 public Object[] toArray()

 public <T> T[] toArray(T[] dest)

 public boolean add(E elem)

 public boolean remove(Object elem)

Advanced programming in Java

String[] strings = new
String[collection.size()];

strings =
collection.toArray(strings);

String[] strings =
collection.toArray(new
String[0]);

 public boolean
containsAll(Collection<?>
coll)

 public boolean
addAll(Collection<? extends
E> coll)

 public boolean
removeAll(Collection<?> coll)

 public boolean
retainAll(Collection<?> coll)

 public void clear()

Collection Framework – Collection

Classes

 Classes in Sets:
 HashSet<T>

 LinkedHashSet<T>

 TreeSet<T>

 EnumSet<T extends Enum<T>>

 Classes in Lists:
 To define a collection whose

elements have a defined
order-each element exists in a
praticular poistion the
collection.

 Vector<T>

 Stack<T>

 LinkedList<T>

 ArrayList<T>

Advanced programming in Java

 Class in Queues:
 FIFO ordering

 PriorityQueue<T>

 Classes in Maps:
 Does not extend Collection

because it has a contract that is
different in important ways: do
not add an element to a Map(add
a key/value pair), and a Map
allows looking up.

 Hashtable<K,V>

 HashMap<K,V>

 LinkedHashMap<K,V>

 WeakHashMap<K,V>

 IdentityHashMap<K,V>

 TreeMap<K,V> : keeping its keys
sorted in the same way as TreeSet

Collection Framework –

Collections of Objects (1)

 Sequences
 The objects are stored in a linear fashion, not necessarily

in any particular order, but in an arbitrary fixed sequence
with a beginning and an end.

 Collections generally have the capability to expand to
accommodate as many elements as necessary.

 Maps
 Each entry in the collection involves a pair of objects.

 A map is also referred to sometimes as a dictionary.

 Each object that is stored in a map has an associated key
object, and the object and its key are stored together as
a “name-value” pair.

Advanced programming in Java

Collection Framework – Using

Collections

 Lists and sets are easy:
HashSet<String> wordList = new HashSet<String>();
LinkedList<Point> waypoints = new LinkedList<Point>();

 Element type must appear in both variable declaration and in
new-expression.

 Maps are more verbose:
TreeMap<String, WordDefinition> dictionary =

new TreeMap<String, WordDefinition>();

 First type is key type, second is the value type.

 See Java API Docs for available operations

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 10

Collection Framework –

Iteration Over Collections

 Often want to iterate over values in collection.

ArrayList collections are easy:
ArrayList<String> quotes;
...
for (int i = 0; i < quotes.size(); i++)

System.out.println(quotes.get(i));

 Impossible/undesirable for other collections!
 Iteratorsare used to traverse contents

 Iterator is another simple interface:
 hasNext() –Returns true if can call next()

 next() –Returns next element in the collection

 ListIterator extends Iterator
 Provides many additional features over Iterator

Advanced programming in Java

Collection Framework –

Iteration Over Collections (2)

 Collections provide an iterator() method
 Returns an iterator for traversing the collection

 Example:

HashSet<Player> players;
...
Iterator<Player> iter = players.iterator();

while (iter.hasNext()) {
Player p = iter.next();
... // Do something with p

}

 Iterator should also use generics

 Can use iterator to delete current element, etc.

Advanced programming in Java

Collection Framework –Java

1.5 Enhanced For-Loop Syntax

 Setting up and using an iterator is annoying

 Java 1.5 introduces syntactic sugar for this:
for (Player p : players) {

... // Do something with p
}
 Can‟t access actual iterator used in loop.

 Best for simple scans over a collection‟s contents

 Can also use enhanced for-loop syntax with arrays:
float sum(float[] values) {

float result = 0.0f;
for (float val : values) result += val;
return result;

}

Advanced programming in Java

Collection Framework – Iterators and

ListIterators

 Iterator<E> interface
 T next()
 boolean hasNext()
 void remove()

 ListIterator<E> interface
 extends Iterator
 T next()
 boolean hasNext()
 int nextIndex()
 T previous()
 boolean hasPrevious()
 int previousIndex()
 void remove()
 void add(T obj)
 void set(T obj)

Advanced programming in Java

public void removeLongStrings
(Collection<? Extends String> coll, int maxLen) {
Iterator<? Extends String> it = coll.iterator();
while (it.hasNext()) {
String str = it.next();
if (Str.length() > maxLen) it.remove();

}
}

ListIterator<String> it = list.listIterator(list.size());
while (it.hasPrevious()) {

String obj = it.previous();
System.out.println(obj);
// … use obj ….

}

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 11

Collection Framework –

Collection Algorithms

 java.util.Collections class provides some common algorithms
 …not to be confused with Collection interface

 Algorithms are provided as static functions.

 Implementations are fast, efficient, and generic.

 Example: sorting
LinkedList<Product> groceries;
...
Collections.sort(groceries);

 Collection is sorted in-place: groceriesis changed

 Read Java API Docs for more details

 Also see Arrays class for array algorithms

Advanced programming in Java

Collection Framework –

Collection Elements (1)

 Collection elements may require certain
capabilities.

 List elements don‟t need anything special
 …unless contains(), remove(), etc. are used!

 Then, elements should provide a correct equals()
implementation

 Requirements for equals():
 a.equals(a) returns true

 a.equals(b) same as b.equals(a)

 If a.equals(b)is true and b.equals(c)is true, then
a.equals(c)is also true

 a.equals(null)returns false

Advanced programming in Java

Collection Framework –

Collection Elements (2)

 Sets and maps require special features
 Sets require these operations on set-elements

 Maps require these operations on the keys

 equals() must definitely work correctly

 TreeSet, TreeMap require sorting capability
 Element or key class must implement java.lang.Comparable interface

 Or, an appropriate implementation of java.util.Comparator must be
provided

 HashSet, HashMap require hashing capability
 Element or key class must provide a good implementation of

Object.hashCode()

Advanced programming in Java

Collection Framework –

Implementing hashCode(1)

 Is this a correct implementation?

public int hashCode() {
return 42;

}

 It satisfies the rules, so technically yes…

 In practice, will cause programs to be very inefficient.

 Hash function should generate a wide range of values.
 Specifically, should produce a uniform distribution of values.

 Facilitates most efficient operation of hash tables.

 Requirement is that equal objects must produce identical hash values…

 Also good if unequal objects produce different hash values.

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 12

Collection Framework –

Implementing hashCode(2)

 A few basic hints:
 If field is a boolean, use 0 or 1 for hash code

 If field is an integer type, cast value to int

 If field is a non-array object type:
 Call the object‟s hashCode() function, or use 0 for

null

 If field is an array:
 Include every array-element into final hash

value!

 If computing the hash is expensive, cache it.
 Must re-compute hash value if object changes!

Advanced programming in Java

Collection Framework –Comparing

and Ordering Objects

 Objects implement java.lang.Comparable<T>interface to
allow them to be ordered
 public int compareTo(T obj)

 Returns a value that imposes an order:
 result < 0 means thisis less than obj

 result == 0 means thisis “same as”obj

 result > 0 means thisis greater than obj

 This defines the natural orderingof a class
 i.e. the “usual”or “most reasonable”sort-order

 Natural ordering should be consistent with
 equals()

 a.compareTo(b)returns 0 only when a.equals(b)is true

 Implement this interface correctly for using TreeSet/ TreeMap

Advanced programming in Java

Collection Framework –

Alternate Orderings

 Can provide extra comparison functions.
 Provide a separate object that implements

java.util.Comparator<T> interface

 Simple interface:
 int compare(T o1, T o2)

 Sorted collections, sort algorithms can also take a
comparator object.
 Allows sorting by all kinds of things!

 Comparator implementations are typically nested
classes
 e.g. Playerclass could provide a ScoreComparator nested

class

Advanced programming in Java

Reflection – Java looking at

Java

 One of the unusual capabilities of Java is that a program can
examine itself
 You can determine the class of an object

 You can find out all about a class: its access modifiers, superclass,
fields, constructors, and methods

 You can find out what is in an interface

 Even if you don’t know the names of things when you write the
program, you can:
 Create an instance of a class

 Get and set instance variables

 Invoke a method on an object

 Create and manipulate arrays

 In “normal” programs you don’t need reflection

 You do need reflection if you are working with programs that
process programs
 Debugger

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 13

Reflection – Introspection

 Introspection is a programmatic facility built on top of
reflection and a few supplemental specifications (see the
java.beans package).

 It provides somewhat higher-level information about a class
than does reflection.

 Introspection makes general class information available at run-
time
 The type (class) does not have to be known at compile time

 E.g. list the attributes of an object

 This is very useful in
 Rapid Application Development (RAD)

 Visual approach to GUI development

 Requires information about component at run-time
 JavaBeans

 Remote Method Invocation (RMI)
 Distributed objects

Advanced programming in Java

Reflection – The Class class

 To find out about a class, first get its Class object

 If you have an object obj, you can get its class object
with
Class c = obj.getClass();

 You can get the class object for the superclass of a Class c
with
Class sup = c.getSuperclass();

 If you know the name of a class (say, Button) at compile
time, you can get its class object with
Class c = Button.class;

 If you know the name of a class at run time (in a String
variable str), you can get its class object with
Class c = class.forName(str);

Advanced programming in Java

Reflection – Getting the class

name

 If you have a class object c, you can get the
name of the class with c.getName()

 getName returns the fully qualified name; that
is,

Class c = Button.class;
String s = c.getName();
System.out.println(s);

will print
java.awt.Button

 Class Class and its methods are in java.lang,
which is always imported and available

Advanced programming in Java

Reflection – Getting all the

superclasses

 getSuperclass() returns a Class object (or null if you call it on
Object, which has no superclass)

 The following code is from the Sun tutorial:

static void printSuperclasses(Object o) {
Class subclass = o.getClass();
Class superclass = subclass.getSuperclass();
while (superclass != null) {

String className = superclass.getName();
System.out.println(className);
subclass = superclass;
superclass = subclass.getSuperclass();

}
}

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 14

Reflection – Getting the class

modifiers(1)

 The modifiers (e.g., public, final, abstract etc.)
of a Class object is encoded in an int and can
be queried by the method getModifiers().

 To decode the int result, we need methods of
the Modifier class, which is in java.lang.reflect,
so:

import java.lang.reflect.*;

 Then we can do things like:
if (Modifier.isPublic(m))

System.out.println("public");

Advanced programming in Java

Reflection – Getting the class

modifiers (2)

 Modifier contains these methods (among
others):
 public static boolean isAbstract(int)

 public static boolean isFinal(int)

 public static boolean isInterface(int)

 public static boolean isPrivate(int)

 public static boolean isProtected(int)

 public static boolean isPublic(int)

 public static String toString(int)
 This will return a string such as

"public final synchronized strictfp"

Advanced programming in Java

Reflection – Getting interfaces

 A class can implement zero or more interfaces
 getInterfaces() returns an array of Class objects

static void printInterfaceNames(Object o) {
Class c = o.getClass();
Class[] theInterfaces = c.getInterfaces();
for (Class inf: interfaces) {

System.out.println(inf.getName()); }}

 The class Class represents both classes and interfaces

 To determine if a given Class object c is an interface, use
c.isInterface()

 To find out more about a class object, use:
 getModifiers(), getFields() // "fields" == "instance variables“,

getConstructors(), getMethods(), isArray()

Advanced programming in Java

Reflection – Getting Fields

 public Field[] getFields() throws SecurityException

 Returns an array of public Fields (including inherited
fields).

 The length of the array may be zero

 The fields are not returned in any particular order

 Both locally defined and inherited instance variables are
returned, but not static variables.

 public Field getField(String name)
throws NoSuchFieldException, SecurityException

 Returns the named public Field

 If no immediate field is found, the superclasses and
interfaces are searched recursively

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 15

Reflection – Using Fields

 If f is a Field object, then
 f.getName() returns the simple name of the field

 f.getType() returns the type (Class) of the field

 f.getModifiers() returns the Modifiers of the field

 f.toString() returns a String containing access
modifiers, the type, and the fully qualified field
name

 Example: public java.lang.String Person.name

 f.getDeclaringClass() returns the Class in which
this field is declared

 note: getFields() may return superclass fields.
Advanced programming in Java

Reflection – Getting

Constructors of a class

 if c is a Class, then

 c.getConstructors() : Constructor[] return an array of all
public constructors of class c.

 c.getConstructor(Class … paramTypes) returns a
constructor whose parameter types match those given
paramTypes.

Ex:

 String.class.getConstructors().length

> 15;

 String.class.getConstrucor(char[].class, int.class,
int.class).toString()

> String(char[], int,int).

Advanced programming in Java

Reflection – Constructors

 If c is a Constructor object, then

 c.getName() returns the name of the constructor, as
a String (this is the same as the name of the class)

 c.getDeclaringClass() returns the Class in which this
constructor is declared

 c.getModifiers() returns the Modifiers of the
constructor

 c.getParameterTypes() returns an array of Class
objects, in declaration order

 c.newInstance(Object… initargs) creates and returns
a new instance of class c
 Arguments that should be primitives are automatically

unwrapped as needed

Advanced programming in Java

Reflection – Example

 Constructor c = String.class.getConstrucor(
char[].class, int.class, int.class).toString()

 String(char[], int,int).

 String s = c.newInstance(

new char[] {„a‟,‟b‟,‟c‟,‟d‟ }, 1, 2
);

 assert s == “bc”;

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 16

Reflection – Methods

 public Method[] getMethods()

throws SecurityException

 Returns an array of Method objects

 These are the public member methods of the

class or interface, including inherited methods

 The methods are returned in no particular order

 public Method getMethod(String name,

Class… parameterTypes)

throws NoSuchMethodException, SecurityException

Advanced programming in Java

Reflection – Method methods

(1)

 getDeclaringClass()

 Returns the Class object representing the class or
interface that declares the method represented by this
Method object

 getName()

 Returns the name of the method represented by this
Method object, as a String

 getModifiers()

 Returns the Java language modifiers for the method
represented by this Method object, as an integer

 getParameterTypes()

 Returns an array of Class objects that represent the
formal parameter types, in declaration order, of the
method represented by this Method object

Advanced programming in Java

Reflection – Method methods

(2)

 getReturnType()

 Returns a Class object that represents the formal return
type of the method represented by this Method object

 toString()

 Returns a String describing this Method (typically pretty
long)

 public Object invoke(Object obj, Object… args)

 Invokes the underlying method represented by this
Method object, on the specified object with the specified
parameters

 Individual parameters are automatically unwrapped to
match primitive formal parameters

Advanced programming in Java

Reflection – Examples of

invoke()

 “abcdefg”.length()

> 7

 Method lengthMethod = String.class.getMethod(“length”) ;

 lengthMethod.invoke(“abcdefg”)

> 7

 “abcdefg”.substring(2, 5)

> cde

 Method substringMethod = String.class.getMethod (

“substring”, int.class, Integer.TYPE) ;

 substringEMthod.invoke(“abcdefg”, 2, new Integer(5))

> cde

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 17

Reflection – Arrays (1)

 To determine whether an object obj is an
array,
 Get its class c with Class c = obj.getClass();
 Test with c.isArray()

 To find the type of components of the array,
 c.getComponentType()
 Returns null if c is not the class of an array

 Ex:
 int[].class.isArray() == true ;
 int[].class.getComponentType() ==

int.class

Advanced programming in Java

Reflection – Arrays (2)

 The Array class in java.lang.reflect provides static methods
for working with arrays

 To create an array,

 Array.newInstance(Class componentType, int size)

 This returns, as an Object, the newly created array
 You can cast it to the desired type if you like

 The componentType may itself be an array

 This would create a multiple-dimensioned array

 The limit on the number of dimensions is usually 255

 Array.newInstance(Class componentType, int… sizes)

 This returns, as an Object, the newly created
multidimensional array (with sizes.length dimensions)

Advanced programming in Java

Reflection – Examples

 a = new int[] {1,2,3,4};

 Array.getInt(a, 2) //  3

 Array.setInt(a, 3, 5) // a = {1,2,3, 5 }.

 s = new String[] { “ab”, “bc”, “cd” };

 Array.get(s, 1) //  “bc”

 Array.set(s, 1, “xxx”) // s[1] = “xxx”

Advanced programming in Java

Reflection – Getting non-public

members of a class

 All getXXX() methods of Class mentioned above return only

public members of the target (as well as ancestor) classes,

but they cannot return non-public members.

 There are another set of getDeclaredXXX() methods in Class

that will return all (even private or static) members of

target class but no inherited members are included.

 getDeclaredConstructors(), defDeclaredConstrucor(Class…)

 getDeclaredFields(),

getDeclaredField(String)

 getDeclaredmethods(),

getDeclaredMethod(String, Class…)

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 18

Reflection – Example

 String.class.getConstructors().length

> 15

 String.class.getDeclaredConstructors().length

> 16.

 Constructor[] cs =
String.class.getDeclaredConstructors();

for(Constructor c : cs)

if(! (Modifier.isPublic(c.getModifiers())))

out.println(c);

> java.lang.String(int,int,char[]) // package

Advanced programming in Java

Annotations – History

 The Java platform has always had various ad hoc

annotation mechanisms
 Javadoc annotations

/**

* Locate a value in a

* collection.

* @param value the sought-after value

* @return the index location of the value

* @throws NotFoundException

*/

int search(Object value) { …

 @transient - an ad hoc annotation indicating that a field

should be ignored by the serialization subsystem

 @deprecated - an ad hoc annotation indicating that the

method should no longer be used

Advanced programming in Java

Annotations – Introduction

 Annotations provide data about a program that is not
part of the program itself. An annotation is an
attribute of a program element.

 As of release 5.0, the platform has a general purpose
annotation (metadata) facility that permits to define
and use your own annotation types.

 The facility consists of:

 a syntax for declaring annotation types

 a syntax for annotating declarations

 APIs for reading annotations

 a class file representation for annotations

 an annotation processing tool

Advanced programming in Java

Annotations – Usage

 Annotations have a number of uses, among

them:

 Information for the compiler - Annotations can be

used by the compiler to detect errors or suppress

warnings

 Compiler-time and deployment-time processing -

Software tools can process annotation information to

generate code, XML files, and so forth

 Runtime processing - Some annotations are

available to be examined at runtime (reflection)

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 19

Annotations – Annotation Type

Declaration (1)

 Similar to normal interface declarations:

 An at-sign @ precedes the interface keyword

 Each method declaration defines an element of the

annotation type

 Methods can have default values

 Once an annotation type is defined, you can use it to

annotate declarations

Advanced programming in Java

public @interface RequestForEnhancement {

int id();

String synopsis();

String engineer() default "[unassigned]";

String date(); default "[unimplemented]";

}

Annotations – Annotation Type

Declaration (2)

 Method declarations should not have any
parameters

 Method declarations should not have any throws
clauses

 Return types of the method should be one of
the following:
 primitives, String, Class, enum, array of the above

types

Advanced programming in Java

public @interface RequestForEnhancement {

int id();

String synopsis();

String engineer() default "[unassigned]";

String date(); default "[unimplemented]";

}

Annotations – Annotating

Declarations (1)

 Syntactically, the annotation is placed in front of the
program element's declaration, similar to static or
final or protected

 An annotation instance consists of

 the "@" sign

 the annotation name

 a parenthesized list of name-value pairs

Advanced programming in Java

@RequestForEnhancement(

id = 2868724,

synopsis = "Enable time-travel",

engineer = "Mr. Peabody",

date = "4/1/3007"

)

public static void travelThroughTime(Date destination) { ... }

Annotations – Annotating

Declarations (2)

 In annotations with a single element, the element
should be named value:

 It is permissible to omit the element name and equals

sign (=) in a single-element annotation:

 If no values, then no parentheses needed:

Advanced programming in Java

public @interface Preliminary { }

@Preliminary public class TimeTravel { ... }

public @interface Copyright {

String value();

}

@Copyright("2002 Yoyodyne Propulsion Systems")

public class OscillationOverthruster { ... }

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 20

Annotations – What can be

annotated?

Annotatable program elements:
 package

 class, including

 interface

 enum

 method

 field

 only at compile time

 local variable

 formal parameter

Advanced programming in Java

Annotations – Annotations

Used by the Compiler

 There are three annotation types that are

predefined by the language specification itself:

 @Deprecated - indicates that the marked element is

deprecated and should no longer be used

 @Override - informs the compiler that the element is

meant to override an element declared in a superclass

 @SuppressWarnings - tells the compiler to suppress

specific warnings that it would otherwise generate

Advanced programming in Java

Annotations – Meta-Annotations

 Meta-annotations - types designed for annotating

annotation-type declarations (annotations-of-annotations)

 Meta-annotations:

 @Target - indicates the targeted elements of a class in which the

annotation type will be applicable

 TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, etc

 @Retention - how long the element holds onto its annotation

 SOURCE, CLASS, RUNTIME

 @Documented - indicates that an annotation with this type should

be documented by the javadoc tool

 @Inherited - indicates that the annotated class with this type is

automatically inherited

Advanced programming in Java

Annotations – Annotation

Processing

 It's possible to read a Java program and take actions based
on its annotations

 To make annotation information available at runtime, the
annotation type itself must be annotated with
@Retention(RetentionPolicy.RUNTIME):

 Annotation data can be examined using reflection
mechanism, see e.g. java.lang.reflect.AccessibleObject:
 <T extends Annotation> T getAnnotation(Class<T>)

 Annotation[] getAnnotations()

 boolean isAnnotationsPresent(<Class<? extends Annotation>)

Advanced programming in Java

@Retention(RetentionPolicy.RUNTIME)

@interface AnnotationForRuntime

{

// Elements that give information for runtime processing

}

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 21

Annotations – Bigger Example

 The following example shows a program that

pokes at classes to see "if they illustrate

anything"

 Things to note in example:

 An annotation may be annotated with itself

 How annotations meta-annotated with
Retention(RUNTIME) can be accessed via

reflection mechanisms

Advanced programming in Java

Annotations – Class Annotation

Example

@Retention(value=RetentionPolicy.RUNTIME)

@Illustrate({

Illustrate.Feature.annotation,

Illustrate.Feature.enumeration })

public @interface Illustrate {

enum Feature {

annotation, enumeration, forLoop,

generics, autoboxing, varargs;

@Override public String toString() {

return "the " + name() + " feature";

}

};

Feature[] value() default {Feature.annotation};

}

Advanced programming in Java

import java.lang.annotation.Annotation;

@Author(@Name(first="James",last="Heliotis"))

@Illustrate(

{Illustrate.Feature.enumeration,Illustrate.Feature.forLoop})

public class Suggester {

@SuppressWarnings({"unchecked"}) // not yet supported

public static void main(String[] args) {

try {

java.util.Scanner userInput =

new java.util.Scanner(System.in);

System.out.print("In what class are you interested? ");

Class theClass = Class.forName(userInput.next());

Illustrate ill =

(Illustrate)theClass.getAnnotation(Illustrate.class);

… continued …

Advanced programming in Java

if (ill != null) {

System.out.println("Look at this class if you'd " +

" like to see examples of");

for (Illustrate.Feature f : ill.value()) {

System.out.println("\t" + f);

}

}

else {

System.out.println(

"That class will teach you nothing.");

}

}

catch(ClassNotFoundException cnfe) {

System.err.println("I could not find a class named \"" +

cnfe.getMessage() + "\".");

System.err.println("Are you sure about that name?");

}

}

}

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 22

$ javac *.java

Note: Suggester.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

$ java Suggester

In what class are you interested? Suggester

Look at this class if you'd like to see examples of

the enumeration feature

the forLoop feature

$ java Suggester

In what class are you interested? Illustrate

Look at this class if you'd like to see examples of

the annotation feature

the enumeration feature

Annotations – Compilation and

Execution

Advanced programming in Java

$ java Suggester

In what class are you interested? Coin

That class will teach you nothing.

$ java Suggester

In what class are you interested? Foo

I could not find a class named "Foo".

Are you sure about that name?

Annotations – Execution

Advanced programming in Java

Annotations – Example – JPA

Annotations

• When using JPA, you can configure the JPA

behavior of your entities using annotations:

• @Entity - designate a plain old Java object (POJO)

class as an entity so that you can use it with JPA

services
• @Table, @Column, @JoinColumn,

@PrimaryKeyJoinColumn – database schema attributes

• @OneToOne, @ManyToMany – relationship mappings

• @Inheritance, @DiscriminatorColumn – inheritance

controlling

Advanced programming in Java

Annotations – Example – JUnit

Annotations

• Annotations and support for Java 5 are key

new features of JUnit 4:

• @Test – annotates test method

• @Before, @After– annotates setUp() and

tearDown() methods for each test

• @BeforeClass, @AfterClass – class-scoped

setUp() and tearDown()

• @Ignore – do not run test

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 23

Advanced programming in Java

Java I/O – Reading & Writing

Data

 Data can come from many Sources & go to

many Destinations

 Memory

 Disk

 Network

 Whatever the Source or Destination, a

Stream has to be opened to Read/Write

Data

Advanced programming in Java

Java I/O – Reading & Writing

Data

Reading

Open a Stream

While more

Information

Read

Close the Stream

Writing

Open a Stream

While more Information

Write

Close the Stream

Advanced programming in Java

Java I/O – Reading & Writing

Data

 java.io Package includes these Stream

Classes

 Character Streams are used for 16-bit Characters

– Uses Reader & Writer Classes

 Byte Streams are used for 8-bit Bytes – Uses

InputStream & OutputStream Classes Used for

Image, Sound Data etc.

Advanced programming in Java

Java I/O – Character Streams

 Reader and
Writer are
abstract
super classes
for character
streams (16-
bit data)

 Sub classes
provide
specialized
behavior

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 24

Advanced programming in Java

Java I/O – Byte Streams

 InputStream
and
OutoutStream
are abstract
super classes
for byte
streams (8-bit
data)

 Sub classes
provide
specialized
behavior

Advanced programming in Java

Java I/O – I/O Super Classes (1)

 Reader and InputStream define similar APIs but
for different data types

int read()

int read(char cbuf[]) Reader

int read(char cbuf[], int offset, int length)

int read()

int read(byte cbuf[]) InputStream

int read(byte cbuf[], int offset, int length)

Advanced programming in Java

Java I/O – I/O Super Classes (2)

 Writer and OutputStream define similar APIs but
for different data types

int write()

int write(char cbuf[]) Writer

int write(char cbuf[], int offset, int length)

int write()

int write(byte cbuf[]) OutputStream

int write(byte cbuf[], int offset, int length)

Advanced programming in Java

Type of I/O Streams Description

Memory

CharArrayReader

CharArrayWriter

ByteArrayInputStream

ByteArrayOutputStream

Use these streams to read from and write to memory.

You create these streams on an existing array and then

use the read and write methods to read from or write to the array.

StringReader

StringWriter

StringBufferInputStream

Use StringReader to read characters from a String in memory.

Use StringWriter to write to a String. StringWriter collects the characters

written to it in a StringBuffer, which can then be converted to a String.

StringBufferInputStream is similar to StringReader, except that it reads bytes

from a StringBuffer.

Pipe

PipedReader

PipedWriter

PipedInputStream

PipedOutputStream

Implement the input and output components of a pipe. Pipes are used to

channel the output from one thread into the input of another.

File

FileReader

FileWriter

FileInputStream

FileOutputStream

Collectively called file streams, these streams are used to read from or write

to a file on the native file system.

Object

Serializati-

on

N/A

ObjectInputStream

ObjectOutputStream

Used to serialize objects.

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 25

Advanced programming in Java

Java I/O – Stream wrapping

 BufferedReader class can be used for efficient reading
of characters, arrays and lines

BufferedReader in = new BufferedReader(new FileReader("foo.in"));

 BufferedWriter and PrintWriter classes can be used for
efficient writing of characters, arrays and lines and
other data types

BufferedWriter out = new BufferedWriter(newFileWriter("foo.out"));

PrintWriter out= new PrintWriter(new BufferedWriter(new FileWriter("foo.out")));

Advanced programming in Java

Java I/O – Decorator Pattern

 Capabilities are added using a design called

the Decorator Pattern.

+operation()

Component

+operation()

ConcreteComponent

+operation()

-

Decorator

+operation()

+addedOperation1()

ConcreteDecorator1

+operation()

+addedOperation2()

ConcreteDecorator2

1

-component

1

component.operation()

super.operation()

addedOperation2()

Advanced programming in Java

Java I/O – Purpose of Decorator

 Best way to think of this is as follows:
 There are two important issues when constructing

an i/o library
 Where the i/o is going (file, etc).

 How the data is represented (String, native type, etc.)

 Rather than create a class for each combination,
Decorator classes allow you to mix and match,
augment functionality of base classes.

 This is a bit confusing but is very flexible.

 Decorators can also add other capabilities, such as
peek ahead, push back, write line number, etc.

Advanced programming in Java

Java I/O – Java decorators

 All Java i/o decorator classes inherit from FilterInputStream and
FilterOutputStream

 Look at the api for these classes and note a few things:
 They wrap instances of InputStream/OutputStream respectively.
 They inherit from InputStream/OutputStream respectively

 This is an odd inheritence hierarchy but is necessary to ensure that
the FilterStreams support the same interface as the underlying
class.

public class FilterInputStream extends InputStream {

protected InputStream in;

protected FilterInputStream(InputStream in) {

this.in = in;

} }

http://cycleserv2.csail.mit.edu/Harpoon/srcdoc/java/io/InputStream.html
http://cycleserv2.csail.mit.edu/Harpoon/srcdoc/java/io/InputStream.html
http://cycleserv2.csail.mit.edu/Harpoon/srcdoc/java/io/InputStream.html
http://cycleserv2.csail.mit.edu/Harpoon/srcdoc/java/io/FilterInputStream.html

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 26

Advanced programming in Java

Java I/O – File Handling -

Character Streams
import java.io.*;

public class CopyCharacters {

public static void main(String[] args) throws IOException {

File inputFile = new File(“InputFile.txt");

File outputFile = new File(“OutputFile.txt");

FileReader in = new FileReader(inputFile);

FileWriter out = new FileWriter(outputFile);

int c;

while ((c = in.read()) != -1)

out.write(c);

in.close();

out.close();

}

}

Create File Objects

Create File Streams

Close the Streams

// Read from Stream

// Write to Stream

Advanced programming in Java

Java I/O – Getting User Input in

Command Line

 Read as reading from the standard input
device which is treated as an input stream
represented by System.in

BufferedReader input= new

BufferedReader(newInputStreamReader(System.in));

System.out.println("Enter the name :");

String name =input.readLine();

 Throws java.io.IOException

Advanced programming in Java

Java I/O – Object Serialization

 To allow to Read & Write Objects

 The State of the Object is represented in a
Serialized form sufficient to reconstruct it
later

 Streams to be used
 ObjectInputStream

 ObjectOutputStream

Advanced programming in Java

Java I/O – Object Serialization

 Object Serialization is used in

 Remote Method Invocation (RMI) : communication
between objects via sockets

 Lightweight persistence : the archival of an object
for use in a later invocation of the same program

 An Object of any Class that implements the Serializable
Interface can be serialized
 public class MyClass implements Serializable {

...

}

 Serializable is an Empty Interface, no methods have to be
implemented

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 27

Advanced programming in Java

Java I/O – Object Serialization

Example

 Writing to an ObjectOutputStream

FileOutputStream fos = new FileOutputStream("t.tmp");

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeInt(12345);

oos.writeObject("Today");

oos.writeObject(new Date());

oos.close();

 ObjectOutputStream must be constructed on

another Stream

Advanced programming in Java

Java I/O – Object Serialization

 Reading from an ObjectInputStream

FileInputStream in = new FileInputStream("Time");

ObjectInputStream s = new ObjectInputStream(in);

String today = (String)s.readObject();

Date date = (Date)s.readObject();

 The objects must be read from the stream in

the same order in which they were written

Advanced programming in Java

Java I/O – Object Serialization

 Specialized behavior can be provided in

serilazation and deserialization by

implementing the following methods

private void writeObject(java.io.ObjectOutputStream out) throws

IOException

private void readObject(java.io.ObjectInputStream in) throws

IOException, ClassNotFoundException;

Advanced programming in Java

Java I/O – Protecting sensitive

data

Problem: During deserialization, the private state of the object is
restored, to avoid compromising a class, you must provide either
that –
 the sensitive state of an object must not be restored from the stream

or

 that it must be reverified by the class.

Solution
 mark fields that contain sensitive data as private transient. transient

and static fields are not serialized or deserialized

 Particularly sensitive classes should not be serialized. To accomplish
this, the object should not implement either the Serializable or
Externalizable interface.

 Some classes may find it beneficial to allow writing and reading but to
specifically handle and revalidate the state as it is deserialized. The
class should implement writeObject and readObject methods to save
and restore only the appropriate state.

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 28

Advanced programming in Java

Java I/O – Compression in Java

 java.util.jar

 JarInputStream, JarOutputStream

 java.util.zip

 ZIPInputStream, ZIPOuputStream

 GZIPInputStream, GZIPOutputStream

Advanced programming in Java

Java I/O – Example: Creating

ZIP file (1)

String[] filenames = new String[]{"filename1", "filename2"};

byte[] buf = new byte[1024];

try {

String outFilename = "outfile.zip";
ZipOutputStream out = new ZipOutputStream(

new FileOutputStream(outFilename));

for (int i=0; i<filenames.length; i++) {

FileInputStream in = new FileInputStream(filenames[i]);

// <komprese souboru>

in.close();

}

out.close();

} catch (IOException e) {}

Advanced programming in Java

Java I/O – Example: Creating ZIP

file (2)

// <komprese souboru>

// Vytvoření nové výstupní položky

out.putNextEntry(new ZipEntry(filenames[i]));

// Přenos obsahu souboru

int len;

while ((len = in.read(buf)) > 0) {

out.write(buf, 0, len);

}

// Uzavření výstupní položky

out.closeEntry();

Advanced programming in Java

Java I/O – Example: Using ZIP file

try {

ZipFile zf = new ZipFile(zipFileName);

for (Enumeration entries = zf.entries();
entries.hasMoreElements();) {

String zipEntryName =
((ZipEntry)entries.nextElement()).getName();

System.out.println("Entry : " + zipEntryName);

}

} catch (IOException e) {

e.printStackTrace();

}

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 29

Advanced programming in Java

Java I/O – Example: Extracting ZIP

file

ZipEntry zipEntry = (ZipEntry)entries.nextElement();

String zipEntryName = zipEntry.getName(); int lastDirSep;

if ((lastDirSep = zipEntryName.lastIndexOf('/')) > 0) {

String dirName = zipEntryName.substring(0, lastDirSep);

(new File(dirName)).mkdirs();

}

if (!zipEntryName.endsWith("/")) {

OutputStream out = new FileOutputStream(zipEntryName);

InputStream in = zf.getInputStream(zipEntry);

byte[] buf = new byte[1024]; int len;

while((len = in.read(buf)) > 0) out.write(buf, 0, len);

out.close(); in.close();

}

Advanced programming in Java

Threads – Basics

 Process (task)
 Separate “program” with his own memory (address space)

 Based on operating system

 Operating system is responsible for process execution.

 Multitasking – operation system ability to perform
several processes at the same time.

 Thread
 „light waited process“

 One process may be composed from several threads.

 Thread‟s creation is much faster.

Advanced programming in Java

Code-Granularity

Code Item

Large grain

(task level)

Program

Medium grain

(control level)

Function (thread)

Fine grain

(data level)

Loop (Compiler)

Very fine grain

(multiple issue)

With hardware

Task i-l Task i Task i+1

func1 ()

{

....

....

}

func2 ()

{

....

....

}

func3 ()

{

....

....

}

a (0) =..

b (0) =..

a (1)=..

b (1)=..

a (2)=..

b (2)=..

+ x Load

Sockets/

PVM/MPI

Threads

Compilers

CPU

Threads – Level of parallelism

Advanced programming in Java

P1

P2

P3

time

amount of running threads <= amount of CPUs

CPU

CPU

CPU

Threads – Execution of multi-

thread applications(1)

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 30

Advanced programming in Java

Threads – Execution of multi-

thread applications (2)

 Concurrent thread execution

amount of running threads > amount of CPUs

P1

P2

P3

time

CPU

Advanced programming in Java

Threads – Creating concurrent

applications(1)

 We can use threads in Java.

 Threads are executed by Java Virtual

Machine.

 They are executed in parallel if possible.

Advanced programming in Java

Threads – Creating concurrent

applications(2)

 Thread properties in Java
 Thread execution starts at specific point of program

(main method).

 Instructions are executed one by one with respect to
source code.

 Threads can cooperate together, but they are executed
separately.

 Every thread can access programs data (with respect to
Java security rules).
 Local properties – are accessible within a method only.

 Instance and static properties – are shared between
threads.

Advanced programming in Java

Threads – Thread Creation

 Every class can be a starting point of a new

thread. It must:

 Implement interface java.lang.Runnable;

 Or extends class java.lang.Thread.

 Start up point is the run() method in both

cases.

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 31

Advanced programming in Java

Threads – Extension of class

Thread

 Your class must extend class Thread and re-implement method
run().
class MyThread extends Thread

{

public void run()

{

// thread body

}

}

 Thread‟s creation:

MyThread thr = new MyThread();

 Running created thread:

thr.start();

Advanced programming in Java

Threads – Example

class MyThread extends Thread { // thread

public void run() {

System.out.println(" this thread is running ... ");

}

} // end class MyThread

class ThreadEx1 { // using thread

public static void main(String [] args) {

MyThread t = new MyThread();

//methods start predefined method run

t.start();

}

}

Advanced programming in Java

Threads – Runnable interface

class MyThread implements Runnable

{

.....

public void run()

{

// tělo vlákna

}

}

 Thread‟s creation:

MyThread myObject = new MyThread();

Thread thr1 = new Thread(myObject);

 Thread‟s execution:

thr1.start();

Advanced programming in Java

Threads – Example

class MyThread implements Runnable {

public void run() {

System.out.println(" this thread is running ... ");

}

}

class ThreadEx2 {

public static void main(String [] args) {

Thread t = new Thread(new MyThread());

t.start();

}

}

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 32

Advanced programming in Java

Threads – Thread class

 Basic properties:

 Constructors

 public Thread()

 public Thread(Runnable target)

 public Thread(String name)

 public Thread(Runnable target, String name)

 Basic methods

 public void start()

 public void run()

Threads – Starting threads

 Invoking its start method causes an instance
of class Thread to initiate its run method

 A Thread terminates when its run method
completes by either returning normally or
throwing an unchecked exception

 Threads are not restartable, even after they
terminate

 isAlive returns true if a thread has been
started by has not terminated

Advanced programming in Java

Threads – More Thread

methods

 Thread.currentThread returns a
reference to the current Thread

 Thread.sleep(long msecs) causes the
current thread to suspend for at least
msecs milliseconds

 Thread.interrupt is the preferred
method for stopping a thread (not
Thread.stop)

Advanced programming in Java

Threads – Priorities

 Each Thread has a priority, between
Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY (from 1 to 10)

 Each new thread has the same priority as the thread
that created it

 The initial thread associated with a main by default
has priority Thread.NORM_PRIORITY (5)

 getPriority gets current Thread priority,
setPriority sets priority

 A scheduler is generally biased to prefer running
threads with higher priorities (depends on JVM
implementation)

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 33

Threads – The “run queue” of

runnable threads

 The Java language specification does not specify
how Java is supposed to choose the thread to
run if there are several runnable threads of
equal priority.

 One possibility – pick a thread and run it until it
completes, or until it executes a method that
causes it to move into a non-running state.

 Another possibility – “time slicing”: pick a
thread and run it for a short period of time.
Then, if it is not finished, suspend it and pick
another thread to run for the same period of
time.

Advanced programming in Java

Threads – Thread States and

Scheduling

 A Java thread can be in new, runnable,

running, suspended, blocked, suspended-

blocked and dead.

 The Threads class has methods that move

the thread from one state to another.

Advanced programming in Java

Threads – Thread/process

states

0 1 2 3 4

stop

start yield

sleep/suspend resume

run
stop/end

stop

stop

dispatch

suspend

1 – terminated

2 – running

3 – suspended

4 - runnable
Advanced programming in Java

Threads – Thread states (1)

 New state – a Thread newly created.

 Runnable – after being started, the Thread can

be run. It is put into the “run queue” of

Threads and waits its turn to run. “Runnable”

does not mean “running”.

 Running – the thread is executing its code. On

a uniprocessor machine, at most one thread can

run at a time.

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 34

Threads – Thread states (2)

 Blocked – the thread is waiting for something to
happen
It is waiting for an i/o operation it is executing
to complete
It has been told to sleep for a specified period
of time through the sleep method
It has executed the wait() method and will
block until another thread executes a notify()
or notifyAll() method.

 It will return to runnable state after sleeping,
notifying, etc.

Advanced programming in Java

Threads – Thread states (3)

 Dead
 The final state. After reaching this state the

Thread can no longer execute.

 A thread can reach this state after the run
method is finished, or by something executing its
stop() method.

 Threads can kill themselves, or a thread can kill
another thread.

Advanced programming in Java

Advanced programming in Java

Threads – Thread’s life cycle

conclusion

 Basic Thread‟s states: Initial, Runnable, Not Runnable a Dead.

 Thread‟s methods that affects his life cycle.

 public void start()

 public void run()

 public static void sleep(long milisekund)

 public boolean isAlive()

 public void join()

 public void interrupt()

 public boolean isInterrupted()

 public static void yield()

 public Thread.state getState()

Advanced programming in Java

Threads – join() Method

 A call to t1.join() causes the current thread

to block until Thread t1 terminates

 Throws InterruptedException

 main() can join on all threads it spawns to

wait for them all to finish

 Optional timeout parameter (milliseconds):

 t1.join(2000);

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 35

Advanced programming in Java

Threads – Daemon Threads

 by themselves do not keep a VM alive

 call setDaemon(true)

 call must occur before calling start(); otherwise,

an IllegalThreadStateException is thrown

 Thread‟s default daemon status is the same

as the thread that spawned it

 Call isDaemon() to see if thread is a

daemon

Threads – Concurrency

 An object in a program can be changed by more
than one thread
 Q: Is the order of changes that were preformed on

the object important? Can it be performed at the
same time?

 A race condition – the outcome of a program is
affected by the order in which the program's
threads are allocated CPU time
 Two threads are simultaneously modifying a single

object

 Both threads “race” to store their value

Advanced programming in Java

Threads – Critical Section

 Section of program that must be executed
exclusively by one thread only.
 Java allows mutual exclusion on objects

 Acquires the object's lock. (Another way of saying
“completing the preprotocol”.)

 synchronized(obj) { code; } means that
no other synchronized(obj) block can be
executed simultaneously with code.

 Java use Monitors for locking objects.

Advanced programming in Java

Threads – Example

public class BankAccount {

private float balance;

public synchronized void deposit(float amount) {
balance += amount;

}

public synchronized void withdraw(float amount) {
balance -= amount;

}
}

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 36

Threads – Monitors (1)

 Each object has a “monitor” that is a token

used to determine which application thread has

control of a particular object instance

 In execution of a synchronized method (or

block), access to the object monitor must be

gained before the execution

 Access to the object monitor is queued

Advanced programming in Java

Threads – Monitor (2)

 Entering a monitor is also referred to as

locking the monitor, or acquiring ownership

of the monitor

 If a thread A tries to acquire ownership of a

monitor and a different thread has already

entered the monitor, the current thread (A)

must wait until the other thread leaves the

monitor
Advanced programming in Java

Threads – Java Locks are

Reentrant

 Is there a problem with the following code?

public class Test {
public synchronized void a() {

b();
System.out.println(“I am at a”);

}
public synchronized void b() {

System.out.println(“I am at b”);
}

}
Advanced programming in Java

Threads – The wait() Method (1)

 The wait() method is part of the

java.lang.Object interface

 It requires a lock on the object‟s monitor to

execute

 It must be called from a synchronized

method, or from a synchronized segment of

code. Why?

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 37

Threads – The wait() Method (2)

 wait() causes the current thread to wait

until another thread invokes the notify()

method or the notifyAll() method for this

object

 Upon call for wait(), the thread releases

ownership of this monitor and waits until

another thread notifies the waiting threads

of the object
Advanced programming in Java

Threads – The wait() Method (3)

 wait() is also similar to yield()

 Both take the current thread off the execution

stack and force it to be rescheduled

 However, wait() is not automatically put

back into the scheduler queue

 notify() must be called in order to get a thread

back into the scheduler‟s queue

Advanced programming in Java

Threads – Wait and Notify: Code

 Consumer:

synchronized (lock) {

while (!resourceAvailable()) {

lock.wait();

}

consumeResource();

}

 Producer:

produceResource();

synchronized (lock) {

lock.notifyAll();

}

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 38

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 39

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 40

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Threads – Wait/Notify Sequence

Lock Object

Consumer

Thread

Producer

Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()

4. synchronized(lock) {

5. lock.notify();

6.}
7. Reacquire lock

8. Return from wait()

9. consumeResource();

10. }

Advanced programming in Java

Advanced programming in Java

Threads – Example - Producer

class Producer extends Thread{

private Pool pool;

public Producer(Pool pool) {

this.pool=pool;

}

public void run() {

for(int i=0;i<10;i++) {

System.out.println("Produced item: "+i);

pool.putItem(i);

try{

Thread.sleep(new java.util.Random().nextInt(1000));

}catch (InterruptedException e) {}

}

}

}

Advanced programming in Java

Threads – Example - Customer

class Customer extends Thread{

private Pool pool;

private String name;

public Customer(Pool pool,String name) {

this.pool=pool;

this.name=name;

}

public void run() {

for(int i=0;i<5;i++) {

int tmp=pool.getItem();

System.out.println(

name+": Consumed item: "+tmp);

}

}

}

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 41

Advanced programming in Java

Threads – Example - Pool

class Pool {

private int item;

private boolean full = false;

public synchronized void putItem(int item) {

while(full) {

try{

wait();

}catch(InterruptedException e){ }

}

this.item=item;

full=true;

notifyAll();

}

Advanced programming in Java

Threads – Example - Pool

public synchronized int getItem() {

while(!full) {

try{

wait();

}catch(InterruptedException e) {}

}

int tmp= this.item;

this.full=false;

notifyAll();

return tmp;

}

}

Advanced programming in Java

Threads – Example - main

public static void main(String[] args) {

Pool pool = new Pool();

Producer producer=new Producer(pool);

Customer consumer1=new Customer(pool,"A");

Customer consumer2=new Customer(pool,"B");

consumer1.start();

consumer2.start();

producer.start();

}

Advanced programming in Java

Threads – Example - output

Produced item: 0

A: Consumed item: 0

Produced item: 1

B: Consumed item: 1

Produced item: 2

A: Consumed item: 2

Produced item: 3

B: Consumed item: 3

Produced item: 4

A: Consumed item: 4

Produced item: 5

A: Consumed item: 5

Produced item: 6

B: Consumed item: 6

Produced item: 7

A: Consumed item: 7

Produced item: 8

B: Consumed item: 8

Produced item: 9

B: Consumed item: 9

Advanced programming in Java

(c) Marek Běhálek, Katedra informatiky FEI VŠB-TU Ostrava 42

Threads – Locks and Pre-Java 5

Approach

 Each instance of the Java Object class has an
object-lock

 Use the synchronized keyword for a method
 Or block of code

 When entering that method, that thread owns the
lock

 When leaving that method, lock is released

 Condition: something that allows coordination
 wait() – sleep until the condition for that object

becomes true

 notifyAll() – tell other threads the condition is true

Advanced programming in Java

Threads –“New” Java

Concurrency Library

 What was just shown is not good design (some
argue it‟s truly broken)

 In Java 5, new approach and library support
 More like C#, by the way

 java.util.concurrent

 Lock objects (an interface)
 Lock has lock() and unlock() methods

 Conditions objects (more than one)
 Available from a Lock object

 Condition has signalAll() and await() methods

Advanced programming in Java

Threads – Using Java 5 Lock

and Conditions

 Define objects in Queue class:

private Lock queueLock = new ReentrantLock();

private Condition spaceAvailable =
queueLock.newCondition();

 Need to check a condition?
while (unable to proceed)

spaceAvailable.await();
// now proceed

 Some place else:

spaceAvailable.signalAll();

Advanced programming in Java

