Difference between revisions of "FP Laboratory 7"
Jump to navigation
Jump to search
Line 131: | Line 131: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | *Rotate picture to the left and to the right. <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/ | + | *Rotate picture to the left and to the right. <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/l9qIHTFsEV0]]</div> |
<syntaxhighlight lang="Haskell"> | <syntaxhighlight lang="Haskell"> | ||
rotateR :: Pic -> Pic | rotateR :: Pic -> Pic |
Revision as of 14:24, 14 October 2020
List of lists
Consider following type representing picture:
type Pic = [String]
If you want to print this picture you can use:
pp :: Pic -> IO ()
pp x = putStr (concat (map (++"\n") x))
Picture example:
pic :: Pic
pic = [ "....#....",
"...###...",
"..#.#.#..",
".#..#..#.",
"....#....",
"....#....",
"....#####"]
*Main> pp pic
....#....
...###...
..#.#.#..
.#..#..#.
....#....
....#....
....#####
Create functions that:
- Flips picture veriticaly and horizontaly.
flipV :: Pic -> Pic
flipH :: Pic -> Pic
*Main> pp(flipV pic)
....#....
...###...
..#.#.#..
.#..#..#.
....#....
....#....
#####....
*Main> pp(flipH pic)
....#####
....#....
....#....
.#..#..#.
..#.#.#..
...###...
....#....
flipV :: Pic -> Pic
flipV = map reverse
flipV' :: Pic -> Pic
flipV' xs = [reverse x|x<-xs]
flipH :: Pic -> Pic
flipH = reverse
- Place one picture above another.
above :: Pic -> Pic -> Pic
*Main> pp(above pic pic)
....#....
...###...
..#.#.#..
.#..#..#.
....#....
....#....
....#####
....#....
...###...
..#.#.#..
.#..#..#.
....#....
....#....
....#####
above :: Pic -> Pic -> Pic
above x y = x ++ y
- Place two pictures side by side (consider, that they have the same height).
sideBySide :: Pic -> Pic -> Pic
*Main> pp(sideBySide pic pic)
....#........#....
...###......###...
..#.#.#....#.#.#..
.#..#..#..#..#..#.
....#........#....
....#........#....
....#####....#####
sideBySide :: Pic -> Pic -> Pic
sideBySide xs ys = map (\(x,y) -> x ++ y)(zip xs ys)
sideBySide':: Pic -> Pic -> Pic
sideBySide' (x:xs) (y:ys) = (x ++ y) : sideBySide' xs ys
sideBySide' _ _ = []
sideBySide'' :: Pic -> Pic -> Pic
sideBySide'' = zipWith (++)
- Rotate picture to the left and to the right.
rotateR :: Pic -> Pic
rotateL :: Pic -> Pic
*Main> pp(rotateR pic)
.......
...#...
....#..
.....#.
#######
#....#.
#...#..
#..#...
#......
*Main> pp(rotateL pic)
......#
...#..#
..#...#
.#....#
#######
.#.....
..#....
...#...
.......
toRow :: String -> Pic
toRow xs = map (\x -> [x]) xs -- [[x]|x<-xs]
rotateR :: Pic -> Pic
rotateR [x] = toRow x
rotateR (x:xs) = (rotateR xs) `sideBySide` (toRow x)
rotateR' :: Pic -> Pic
rotateR' x = foldl1 sideBySide (reverse (map toRow x))
rotateL :: Pic -> Pic
rotateL [x] = reverse(toRow x)
rotateL (x:xs) = reverse(toRow x) `sideBySide` (rotateL xs)
rotateL' :: Pic -> Pic
rotateL' x = foldl1 sideBySide (map (reverse.toRow) x)
- Increase every point in the picture n times.
zoom :: Int -> Pic -> Pic
*Main> pp(zoom 2 pic)
........##........
........##........
......######......
......######......
....##..##..##....
....##..##..##....
..##....##....##..
..##....##....##..
........##........
........##........
........##........
........##........
........##########
........##########
zoom :: Int -> Pic -> Pic
zoom n xs = [concat(map (replicate n) x)|x<-concat (map (replicate n) xs)]