Difference between revisions of "PFP Homework 1"

From Marek Běhálek Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
<syntaxhighlight lang="Haskell">
 
<syntaxhighlight lang="Haskell">
 
ex1 :: Automaton  
 
ex1 :: Automaton  
ex1 = (3, [0], [2], "ab", [(0,'a',1), (0,'b',0), (1,'a',1), (1,'b',2), (2,'a',1), (2,'b',0)])
+
ex1 = (3, "ab", [(0,'a',1), (0,'b',0), (1,'a',1), (1,'b',2), (2,'a',1), (2,'b',0)], 0, [2],)
  
 
ex2 :: Automaton  
 
ex2 :: Automaton  
ex2 = (3, [0], [2], "ab", [(0,'a',1), (0,'a',0), (0,'b',0), (1,'b',2)])
+
ex2 = (3, "ab", [(0,'a',1), (0,'a',0), (0,'b',0), (1,'b',2)], 0, [2])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
* Create a function, that sorts an array using quicksort algorithm [https://en.wikipedia.org/wiki/Quicksort <code>quicksort</code>]. Inside, you must use the mutable array [https://hackage.haskell.org/package/array-0.5.4.0/docs/Data-Array-ST.html#t:STArray <code>STArray</code>].
+
Your task will be to create three functions:
<syntaxhighlight lang="Haskell">quickSort :: Array Int Int -> Array Int Int</syntaxhighlight>
+
 
 +
* First function checks if a given finite automaton is a '''deterministic''' finite automaton.
 +
<syntaxhighlight lang="Haskell">isDeterministic:: Automaton  -> Bool</syntaxhighlight>
 
<syntaxhighlight lang="Haskell" class="myDark">
 
<syntaxhighlight lang="Haskell" class="myDark">
ghci> elems $ quickSort $  listArray (0,5) [8,4,9,6,7,1]
+
ghci>isDeterministic ex1
[1,4,6,7,8,9]
+
True
 
</syntaxhighlight>
 
</syntaxhighlight>

Revision as of 12:38, 10 October 2023

Automatons

Usually, a finite automaton defined as: where Q represents states, next is input alphabet, then transitions (), is starting state and finally there is a set of final states.

In our case, a finite automaton is represented by types:

type Transition = (Int, Char, Int)
type Automaton = (Int, String, [Transition], Int, [Int])

where:

  • first number N defines number of states - states will be coded by integer numbers in interval ;
  • second element is a string containing the input symbols - you can safely assume; it contains no duplicities;
  • third is a list defining the trasition function - elementary transition is a triple (q1, a, q2) representing a transition: ;
  • is a number from interval ;
  • finally, there is a list of number representing possible states that are final in defined automaton.

As examples we can use following automatons:

ex1 :: Automaton 
ex1 = (3, "ab", [(0,'a',1), (0,'b',0), (1,'a',1), (1,'b',2), (2,'a',1), (2,'b',0)], 0, [2],)

ex2 :: Automaton 
ex2 = (3, "ab", [(0,'a',1), (0,'a',0), (0,'b',0), (1,'b',2)], 0, [2])

Your task will be to create three functions:

  • First function checks if a given finite automaton is a deterministic finite automaton.
isDeterministic:: Automaton  -> Bool
ghci>isDeterministic ex1
True