Difference between revisions of "FP Laboratory 4"
Jump to navigation
Jump to search
(30 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | == Functions working with lists == | + | <translate> |
+ | == Functions working with lists == <!--T:1--> | ||
Implement following functions: | Implement following functions: | ||
+ | <!--T:2--> | ||
* Create a function that takes first n elements of the list. | * Create a function that takes first n elements of the list. | ||
+ | </translate> | ||
+ | |||
<syntaxhighlight lang="Haskell">take' :: Int -> [a] -> [a]</syntaxhighlight> | <syntaxhighlight lang="Haskell">take' :: Int -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> take' 2 [1,2,3] | ||
+ | [1,2] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | take' :: Int -> [a] -> [a] | ||
+ | take' 0 _ = [] | ||
+ | take' _ [] = [] | ||
+ | take' n (x:xs) = x: take' (n-1) xs | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:3--> | ||
* Create a function that takes the remaining list after the first n elements. | * Create a function that takes the remaining list after the first n elements. | ||
− | <syntaxhighlight lang="Haskell">drop' :: Int -> [a] -> a</syntaxhighlight> | + | </translate> |
+ | |||
+ | <syntaxhighlight lang="Haskell">drop' :: Int -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> drop' 2 [1,2,3] | ||
+ | [3] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | drop' :: Int -> [a] -> [a] | ||
+ | drop' 0 x = x | ||
+ | drop' _ [] = [] | ||
+ | drop' n (_:xs) = drop' (n-1) xs | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:4--> | ||
* Create a function that find the smallest element in the list. Consider input restrictions. | * Create a function that find the smallest element in the list. Consider input restrictions. | ||
+ | </translate> | ||
+ | |||
<syntaxhighlight lang="Haskell">minimum' :: [a] -> a -- Is this right?</syntaxhighlight> | <syntaxhighlight lang="Haskell">minimum' :: [a] -> a -- Is this right?</syntaxhighlight> | ||
− | + | <syntaxhighlight lang="Haskell" class="myDark"> | |
− | <syntaxhighlight lang="Haskell" | ||
− | == Functions working with lists and tuples == | + | *Main> minimum' [1,3,4,0] |
+ | 0 | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | minimum' :: Ord a => [a] -> a | ||
+ | minimum' [x] = x | ||
+ | minimum' (x:y:z) | x < y = minimum' (x:z) | ||
+ | | otherwise = minimum' (y:z) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:5--> | ||
+ | * Find all integer divisors of a given number. | ||
+ | </translate> | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/8iKGkcOlzpI]]</div> | ||
+ | <syntaxhighlight lang="Haskell">divisors :: Int -> [Int]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> divisors 32 | ||
+ | [1,2,4,8,16,32] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | divisors :: Int -> [Int] | ||
+ | divisors n = tmp n where | ||
+ | tmp 0 = [] | ||
+ | tmp x | n `mod` x == 0 = x: tmp (x-1) | ||
+ | | otherwise = tmp (x-1) | ||
+ | |||
+ | divisors' :: Int -> [Int] | ||
+ | divisors' n = filter (\x -> n `mod` x == 0) [1..n] | ||
+ | |||
+ | divisors'' :: Int -> [Int] | ||
+ | divisors'' n = [x | x<-[1..n], n `mod` x == 0] | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | == Functions working with lists and tuples == <!--T:6--> | ||
Implement following functions: | Implement following functions: | ||
* Create a function that merge two lists into one list of tuples. | * Create a function that merge two lists into one list of tuples. | ||
+ | </translate> | ||
+ | |||
<syntaxhighlight lang="Haskell">zipThem:: [a] -> [b] -> [(a,b)]</syntaxhighlight> | <syntaxhighlight lang="Haskell">zipThem:: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> zipThem [1,2,3] "ABCD" | ||
+ | [(1,'A'),(2,'B'),(3,'C')] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | zipThem:: [a] -> [b] -> [(a,b)] | ||
+ | zipThem (x:xs) (y:ys) = (x,y) : zipThem xs ys | ||
+ | zipThem _ _ = [] | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:7--> | ||
* Create a function that compute Cartesian product of two vectors. | * Create a function that compute Cartesian product of two vectors. | ||
+ | </translate> | ||
+ | |||
<syntaxhighlight lang="Haskell">dotProduct :: [a] -> [b] -> [(a,b)]</syntaxhighlight> | <syntaxhighlight lang="Haskell">dotProduct :: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
− | * Create a function that computes n-th number in the Fibonacci sequence. The function should | + | <syntaxhighlight lang="Haskell" class="myDark"> |
+ | *Main> dotProduct [1..4] "ABC" | ||
+ | [(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | dotProduct :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct [] _ = [] | ||
+ | dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where | ||
+ | tmp [] = [] | ||
+ | tmp (b:bs) = (x,b) : tmp bs | ||
+ | |||
+ | dotProduct' :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct' xs ys = [(x,y)|x<-xs, y<-ys] | ||
+ | |||
+ | dotProduct'' :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct'' x y = | ||
+ | zip (concat (map (replicate (length y)) x)) | ||
+ | (concat (replicate (length x) y)) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:8--> | ||
+ | * Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution. | ||
+ | </translate> | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/Sge0DXXI36k]]</div> | ||
<syntaxhighlight lang="Haskell">fibonacci :: Int -> Int</syntaxhighlight> | <syntaxhighlight lang="Haskell">fibonacci :: Int -> Int</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> fibonacci 12 | ||
+ | 144 | ||
+ | </syntaxhighlight> | ||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | fibonacci :: Int -> Int | ||
+ | fibonacci n = fst (tmp n) where | ||
+ | fibStep (a,b) = (b,a+b) | ||
+ | tmp 0 = (0,1) | ||
+ | tmp x = fibStep (tmp (x-1)) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
− | == High-order functions == | + | <translate> |
+ | == High-order functions == <!--T:9--> | ||
* Create a function that takes a string and converts all characters to upper case letters. | * Create a function that takes a string and converts all characters to upper case letters. | ||
+ | </translate> | ||
+ | |||
<syntaxhighlight lang="Haskell">allToUpper :: String -> String</syntaxhighlight> | <syntaxhighlight lang="Haskell">allToUpper :: String -> String</syntaxhighlight> | ||
− | * Implement the <code>quicksort</code> algorithm. As a pivot use always the first element in the list. For dividing the list, use the function <code>filter</code>. | + | <syntaxhighlight lang="Haskell" class="myDark"> |
+ | *Main> allToUpper "aAbc" | ||
+ | "AABC" | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | import Data.Char | ||
+ | |||
+ | allToUpper :: String -> String | ||
+ | allToUpper xs = [toUpper x |x<-xs] | ||
+ | |||
+ | allToUpper' :: String -> String | ||
+ | allToUpper' xs = map toUpper xs | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:10--> | ||
+ | * Implement the [https://en.wikipedia.org/wiki/Quicksort <code>quicksort</code>] algorithm. As a pivot use always the first element in the list. For dividing the list, use the function <code>filter</code>. | ||
+ | </translate> | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/Sj8cbRv89To]]</div> | ||
<syntaxhighlight lang="Haskell">quicksort :: (Ord a) => [a] -> [a]</syntaxhighlight> | <syntaxhighlight lang="Haskell">quicksort :: (Ord a) => [a] -> [a]</syntaxhighlight> | ||
<syntaxhighlight lang="Haskell" class="myDark"> | <syntaxhighlight lang="Haskell" class="myDark"> | ||
*Main> filter (<5) [1..10] | *Main> filter (<5) [1..10] | ||
[1,2,3,4] | [1,2,3,4] | ||
+ | </syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> quicksort [1,5,3,7,9,5,2,1] | ||
+ | [1,1,2,3,5,5,7,9] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | quicksort :: (Ord a) => [a] -> [a] | ||
+ | quicksort [] = [] | ||
+ | quicksort (x:xs) = let lp = filter (< x) xs | ||
+ | rp = filter (>= x) xs | ||
+ | in quicksort lp ++ [x] ++ quicksort rp | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | <translate> | ||
+ | =Additional exercises= <!--T:11--> | ||
+ | * Create a function that removes the first occurrence of a given element from a list. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">removeOne :: Eq a => a -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> removeOne 4 [1,4,6,8,4,5,4,7] | ||
+ | [1,6,8,4,5,4,7] | ||
+ | *Main> removeOne 'e' "Ahoj" | ||
+ | "Ahoj" | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:12--> | ||
+ | * Create a function that removes all occurrences of a given element from a list. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">removeAll :: Eq a => a -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> removeAll 4 [1,4,6,8,4,5,4,7] | ||
+ | [1,6,8,5,7] | ||
+ | *Main> removeAll 'e' "Ahoj" | ||
+ | "Ahoj" | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:13--> | ||
+ | * Create your own implementation of the [http://zvon.org/other/haskell/Outputprelude/replicate_f.html <code>replicate</code>] function. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">replicate' :: Int -> a -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> replicate' 4 8 | ||
+ | [8,8,8,8] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:14--> | ||
+ | * Create a function that realizes the left rotation of a list by n elements. Function [http://zvon.org/other/haskell/Outputprelude/iterate_f.html <code>iterate</code>] might be helpful. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">rotateLeftN :: [a] -> Int -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> rotateLeftN [1,2,3,4,5] 2 | ||
+ | [3,4,5,1,2] | ||
+ | *Main> rotateLeftN [1,2,3,4,5] 6 | ||
+ | [2,3,4,5,1] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:15--> | ||
+ | * Create a function that realizes the right rotation of a list by n elements. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">rotateRightN :: [a] -> Int -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> rotateRightN [1,2,3,4,5] 2 | ||
+ | [4,5,1,2,3] | ||
+ | *Main> rotateRightN [1,2,3,4,5] 6 | ||
+ | [5,1,2,3,4] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:16--> | ||
+ | * Create function alternate, which interleaves two lists into one, alternating between elements taken from the first list and elements from the second. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">alternate :: [a] -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> alternate [1,2,3] [4,5,6] | ||
+ | [1,4,2,5,3,6] | ||
+ | *Main> alternate [1,2] [4,5,6] | ||
+ | [1,4,2,5,6] | ||
+ | *Main> alternate [1,2,3] [4] | ||
+ | [1,4,2,3] | ||
+ | *Main> alternate [1,2,3] [] | ||
+ | [1,2,3] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:17--> | ||
+ | * Use filter to create a non-recursive function that takes a list of integers as input and returns a list of those that are even and greater than 7. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">filterEvenGt7 :: [Int] -> [Int]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> filterEvenGt7 [1,2,6,9,10,3,12,8] | ||
+ | [10,12,8] | ||
+ | *Main> filterEvenGt7 [5,2,6,19,129] | ||
+ | [] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:18--> | ||
+ | * Create a function that splits a list of numbers into a list of triples. Extra elements should be forgotten. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">makeTriples :: [a] -> [(a,a,a)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> makeTriples [1,2,3,4,5,6,7,8,9] | ||
+ | [(1,2,3),(4,5,6),(7,8,9)] | ||
+ | *Main> makeTriples [1,2,3,4,5,6,7,8,9,10,11] | ||
+ | [(1,2,3),(4,5,6),(7,8,9)] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | |||
+ | <translate> | ||
+ | <!--T:19--> | ||
+ | * Create a function that inserts an element into a list on the specific index. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">insertOnIndex :: [a] -> a -> Int -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> insertOnIndex [4,5,6,7,8,9,10] 100 0 | ||
+ | [100,4,5,6,7,8,9,10] | ||
+ | *Main> insertOnIndex [4,5,6,7,8,9,10] 100 3 | ||
+ | [4,5,6,100,7,8,9,10] | ||
+ | *Main> insertOnIndex [4,5,6,7,8,9,10] 100 6 | ||
+ | [4,5,6,7,8,9,100,10] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <translate> | ||
+ | <!--T:20--> | ||
+ | * Create a function that joins the list of lists into one list using a separator. | ||
+ | </translate> | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">join :: [[a]] -> a -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> join ["I","love","functional","programming"] ' ' | ||
+ | "I love functional programming" | ||
+ | *Main> join [[1,2,3],[4,5],[6,7,8],[9]] 0 | ||
+ | [1,2,3,0,4,5,0,6,7,8,0,9] | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 05:56, 10 October 2023
Contents
Functions working with lists
Implement following functions:
- Create a function that takes first n elements of the list.
take' :: Int -> [a] -> [a]
*Main> take' 2 [1,2,3]
[1,2]
- Create a function that takes the remaining list after the first n elements.
drop' :: Int -> [a] -> [a]
*Main> drop' 2 [1,2,3]
[3]
- Create a function that find the smallest element in the list. Consider input restrictions.
minimum' :: [a] -> a -- Is this right?
*Main> minimum' [1,3,4,0]
0
minimum' :: Ord a => [a] -> a
minimum' [x] = x
minimum' (x:y:z) | x < y = minimum' (x:z)
| otherwise = minimum' (y:z)
- Find all integer divisors of a given number.
divisors :: Int -> [Int]
*Main> divisors 32
[1,2,4,8,16,32]
divisors :: Int -> [Int]
divisors n = tmp n where
tmp 0 = []
tmp x | n `mod` x == 0 = x: tmp (x-1)
| otherwise = tmp (x-1)
divisors' :: Int -> [Int]
divisors' n = filter (\x -> n `mod` x == 0) [1..n]
divisors'' :: Int -> [Int]
divisors'' n = [x | x<-[1..n], n `mod` x == 0]
Functions working with lists and tuples
Implement following functions:
- Create a function that merge two lists into one list of tuples.
zipThem:: [a] -> [b] -> [(a,b)]
*Main> zipThem [1,2,3] "ABCD"
[(1,'A'),(2,'B'),(3,'C')]
- Create a function that compute Cartesian product of two vectors.
dotProduct :: [a] -> [b] -> [(a,b)]
*Main> dotProduct [1..4] "ABC"
[(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')]
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct [] _ = []
dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where
tmp [] = []
tmp (b:bs) = (x,b) : tmp bs
dotProduct' :: [a] -> [b] -> [(a,b)]
dotProduct' xs ys = [(x,y)|x<-xs, y<-ys]
dotProduct'' :: [a] -> [b] -> [(a,b)]
dotProduct'' x y =
zip (concat (map (replicate (length y)) x))
(concat (replicate (length x) y))
- Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution.
fibonacci :: Int -> Int
*Main> fibonacci 12
144
fibonacci :: Int -> Int
fibonacci n = fst (tmp n) where
fibStep (a,b) = (b,a+b)
tmp 0 = (0,1)
tmp x = fibStep (tmp (x-1))
High-order functions
- Create a function that takes a string and converts all characters to upper case letters.
allToUpper :: String -> String
*Main> allToUpper "aAbc"
"AABC"
import Data.Char
allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]
allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
- Implement the
quicksort
algorithm. As a pivot use always the first element in the list. For dividing the list, use the functionfilter
.
quicksort :: (Ord a) => [a] -> [a]
*Main> filter (<5) [1..10]
[1,2,3,4]
*Main> quicksort [1,5,3,7,9,5,2,1]
[1,1,2,3,5,5,7,9]
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = let lp = filter (< x) xs
rp = filter (>= x) xs
in quicksort lp ++ [x] ++ quicksort rp
Additional exercises
- Create a function that removes the first occurrence of a given element from a list.
removeOne :: Eq a => a -> [a] -> [a]
*Main> removeOne 4 [1,4,6,8,4,5,4,7]
[1,6,8,4,5,4,7]
*Main> removeOne 'e' "Ahoj"
"Ahoj"
- Create a function that removes all occurrences of a given element from a list.
removeAll :: Eq a => a -> [a] -> [a]
*Main> removeAll 4 [1,4,6,8,4,5,4,7]
[1,6,8,5,7]
*Main> removeAll 'e' "Ahoj"
"Ahoj"
- Create your own implementation of the
replicate
function.
replicate' :: Int -> a -> [a]
*Main> replicate' 4 8
[8,8,8,8]
- Create a function that realizes the left rotation of a list by n elements. Function
iterate
might be helpful.
rotateLeftN :: [a] -> Int -> [a]
*Main> rotateLeftN [1,2,3,4,5] 2
[3,4,5,1,2]
*Main> rotateLeftN [1,2,3,4,5] 6
[2,3,4,5,1]
- Create a function that realizes the right rotation of a list by n elements.
rotateRightN :: [a] -> Int -> [a]
*Main> rotateRightN [1,2,3,4,5] 2
[4,5,1,2,3]
*Main> rotateRightN [1,2,3,4,5] 6
[5,1,2,3,4]
- Create function alternate, which interleaves two lists into one, alternating between elements taken from the first list and elements from the second.
alternate :: [a] -> [a] -> [a]
*Main> alternate [1,2,3] [4,5,6]
[1,4,2,5,3,6]
*Main> alternate [1,2] [4,5,6]
[1,4,2,5,6]
*Main> alternate [1,2,3] [4]
[1,4,2,3]
*Main> alternate [1,2,3] []
[1,2,3]
- Use filter to create a non-recursive function that takes a list of integers as input and returns a list of those that are even and greater than 7.
filterEvenGt7 :: [Int] -> [Int]
*Main> filterEvenGt7 [1,2,6,9,10,3,12,8]
[10,12,8]
*Main> filterEvenGt7 [5,2,6,19,129]
[]
- Create a function that splits a list of numbers into a list of triples. Extra elements should be forgotten.
makeTriples :: [a] -> [(a,a,a)]
*Main> makeTriples [1,2,3,4,5,6,7,8,9]
[(1,2,3),(4,5,6),(7,8,9)]
*Main> makeTriples [1,2,3,4,5,6,7,8,9,10,11]
[(1,2,3),(4,5,6),(7,8,9)]
- Create a function that inserts an element into a list on the specific index.
insertOnIndex :: [a] -> a -> Int -> [a]
*Main> insertOnIndex [4,5,6,7,8,9,10] 100 0
[100,4,5,6,7,8,9,10]
*Main> insertOnIndex [4,5,6,7,8,9,10] 100 3
[4,5,6,100,7,8,9,10]
*Main> insertOnIndex [4,5,6,7,8,9,10] 100 6
[4,5,6,7,8,9,100,10]
- Create a function that joins the list of lists into one list using a separator.
join :: [[a]] -> a -> [a]
*Main> join ["I","love","functional","programming"] ' '
"I love functional programming"
*Main> join [[1,2,3],[4,5],[6,7,8],[9]] 0
[1,2,3,0,4,5,0,6,7,8,0,9]