Difference between revisions of "FP Laboratory 10"
Jump to navigation
Jump to search
(Marked this version for translation) |
|||
Line 1: | Line 1: | ||
<translate> | <translate> | ||
− | == Abstract data types == | + | == Abstract data types == <!--T:1--> |
</translate> | </translate> | ||
Line 6: | Line 6: | ||
<translate> | <translate> | ||
+ | <!--T:2--> | ||
* Create an implementation of the abstract data type [https://en.wikipedia.org/wiki/Stack_(abstract_data_type) <code>Stack</code>] with following functions: | * Create an implementation of the abstract data type [https://en.wikipedia.org/wiki/Stack_(abstract_data_type) <code>Stack</code>] with following functions: | ||
</translate> | </translate> | ||
Line 41: | Line 42: | ||
<translate> | <translate> | ||
+ | <!--T:3--> | ||
* Create an implementation of the abstract data type [https://en.wikipedia.org/wiki/Queue_(abstract_data_type) <code>Queue</code>] with following functions: | * Create an implementation of the abstract data type [https://en.wikipedia.org/wiki/Queue_(abstract_data_type) <code>Queue</code>] with following functions: | ||
</translate> | </translate> |
Revision as of 08:24, 21 October 2021
Abstract data types
- Create an implementation of the abstract data type
Stack
with following functions:
push :: a -> Stack a -> Stack a
pop :: Stack a -> Stack a
top :: Stack a -> a
isEmpty :: Stack a ->Bool
module Stack(Stack, emptyS, push, pop, top, isEmpty) where
data Stack a = Stack [a] deriving Show
emptyS :: Stack a
emptyS = Stack []
push :: a -> Stack a -> Stack a
push x (Stack y) = Stack (x:y)
pop :: Stack a -> Stack a
pop (Stack (_:xs)) = Stack xs
top :: Stack a -> a
top (Stack (x:_)) = x
isEmpty :: Stack a ->Bool
isEmpty (Stack []) = True
isEmpty _ = False
- Create an implementation of the abstract data type
Queue
with following functions:
isEmpty :: Queue a -> Bool
addQ :: a -> Queue a -> Queue a
remQ :: Queue q -> (a, Queue a)
module Queue(Queue, emptyQ, isEmptyQ, addQ, remQ) where
data Queue a = Qu [a] deriving Show
emptyQ :: Queue a
emptyQ = Qu []
isEmptyQ :: Queue a -> Bool
isEmptyQ (Qu q) = null q
addQ :: a -> Queue a -> Queue a
addQ x (Qu xs) = Qu (xs++[x])
remQ :: Queue a -> (a,Queue a)
remQ q@(Qu xs) | not (isEmptyQ q) = (head xs, Qu (tail xs))
| otherwise = error "remQ"