Difference between revisions of "PFP Laboratory 3"

From Marek Běhálek Wiki
Jump to navigation Jump to search
Line 155: Line 155:
 
</syntaxhighlight>
 
</syntaxhighlight>
 
[[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/RTRV90066]]
 
[[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/RTRV90066]]
 +
</div>
 +
<div style="clear:both"></div>
 +
 +
== Operators ==
 +
*Define following functions that performs corresponding logic operations: <code>not', and', or', nand', xor', impl', equ'</code>
 +
*Define the 'standard' priority for all these functions, if they are used as operators.
 +
*Create a function that prints the truth table of a given logical expression for two variables.
 +
 +
<syntaxhighlight lang="Haskell">table :: (Bool -> Bool -> Bool) -> IO ()</syntaxhighlight>
 +
<syntaxhighlight lang="Haskell" class="myDark">
 +
table (\a b -> (and' a (or' a b)))                                                                             
 +
True  True  True
 +
True  False True
 +
False True  False
 +
False False False
 +
</syntaxhighlight>
 +
 +
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution">
 +
<syntaxhighlight lang="Haskell">
 +
 +
not' :: Bool -> Bool
 +
not' True = False
 +
not' False = True
 +
infixl 5 `not'`
 +
 +
and' :: Bool -> Bool -> Bool
 +
and' True True = True
 +
and' _ _ = False
 +
infixl 4 `and'`
 +
 +
or' :: Bool -> Bool -> Bool
 +
or' False False = False
 +
or' _ _ = True
 +
infixl 3 `or'`
 +
 +
nand' :: Bool -> Bool -> Bool
 +
nand' x y = not' (and' x y)
 +
infixl 4 `nand'`
 +
 +
xor' :: Bool -> Bool -> Bool
 +
xor' x y = x/=y
 +
infixl 3 `xor'`
 +
 +
impl' :: Bool -> Bool -> Bool
 +
impl' True False = False
 +
impl' _ _ = True
 +
infixl 2 `impl'`
 +
 +
equ' :: Bool -> Bool -> Bool
 +
equ' x y = x == y
 +
infixl 7 `equ'`
 +
 +
table :: (Bool -> Bool -> Bool) -> IO ()
 +
table expr = putStr (concat [nicePrint [x,y,(expr x y)] |x<-[True,False], y<-[True,False]])
 +
 +
nicePrint :: [Bool] -> String
 +
nicePrint xs = concat [show x++"\t"| x<-xs] ++ "\n"
 +
</syntaxhighlight>
 +
[[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/GWCM50489]]
 +
</div>
 +
<div style="clear:both"></div>
 +
 +
*Extend the previously defined function to accept any number of variables (the number of variables will be given as a first parameter).
 +
 +
<syntaxhighlight lang="Haskell">tablen :: Int -> ([Bool] -> Bool) -> IO ()</syntaxhighlight>
 +
<syntaxhighlight lang="Haskell" class="myDark">
 +
tablen 3 (\[a,b,c] -> a `and'` (b `or'` c) `equ'` a `and'` b `or'` a `and'` c)
 +
True  True  True  => True
 +
True  True  False  => True
 +
True  False  True  => True
 +
True  False  False  => False
 +
False  True  True  => False
 +
False  True  False  => False
 +
False  False  True  => False
 +
False  False  False  => False
 +
</syntaxhighlight>
 +
 +
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution">
 +
<syntaxhighlight lang="Haskell">
 +
tablen :: Int -> ([Bool] -> Bool) -> IO ()
 +
tablen n f = putStr(concat [nicePrint x ++ " => " ++ show(f x) ++ "\n" |x<-allValues n]) where
 +
  allValues 1 = [[True], [False]]
 +
  allValues n = [x:y| x<-[True,False], y<-allValues (n-1)]
 +
 +
  nicePrint :: [Bool] -> String
 +
  nicePrint xs = concat [show x++"\t"| x<-xs]
 +
</syntaxhighlight>
 +
[[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/IDZIG48578]]
 
</div>
 
</div>
 
<div style="clear:both"></div>
 
<div style="clear:both"></div>

Revision as of 10:21, 29 September 2022

High-order functions

  • Create a function that takes a string and converts all characters to upper case letters.
allToUpper :: String -> String
*Main> allToUpper "aAbc"
"AABC"
import Data.Char

allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]                     

allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
Try it!
  • Implement the quicksort algorithm. As a pivot use always the first element in the list. For dividing the list, use the function filter.
Video logo.png
quicksort :: (Ord a) => [a] -> [a]
*Main> filter (<5) [1..10]
[1,2,3,4]
*Main> quicksort [1,5,3,7,9,5,2,1]
[1,1,2,3,5,5,7,9]
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = let lp = filter (< x) xs
                       rp = filter (>= x) xs
                   in quicksort lp ++ [x] ++ quicksort rp
Try it!

List comprehension

Using the list comprehension implement following functions:

  • Create a function that generates a list of all odd numbers in given interval.
oddList :: Int -> Int -> [Int]
*Main> oddList 1 10   
[1,3,5,7,9]
oddList :: Int -> Int -> [Int]
oddList a b = [ x |x<-[a..b], odd x]
Try it!
  • Create a function that removes all upper case letters from a string.
removeAllUpper :: String -> String
*Main> removeAllUpper "ABCabcABC"
"abc"
import Data.Char

removeAllUpper :: String -> String
removeAllUpper xs = [ x |x<-xs, not (isUpper x)]
Try it!
  • Create functions that computes union and intersection of two sets.
union :: Eq a => [a] -> [a] -> [a]
intersection :: Eq a => [a] -> [a] -> [a]
*Main> union [1..5] [3..10]
[1,2,3,4,5,6,7,8,9,10]
*Main> intersection [1..5] [3..10]
[3,4,5]
union :: Eq a => [a] -> [a] -> [a]
union xs ys = xs ++ [y| y<-ys, not (elem y xs)]

intersection ::  Eq a =>  [a] -> [a] -> [a]
intersection xs ys = [y| y<-ys, elem y xs]
Try it!

More complex functions

  • Create a function that count the number of occurrences of all characters from a given string.
Video logo.png
countThem :: String -> [(Char, Int)]
*Main>countThem "hello hello hello"
[('h',3),('e',3),('l',6),('o',3),(' ',2)]
unique :: String -> String
unique n = reverse(tmp n "") where
  tmp [] store = store
  tmp (x:xs) store | x `elem` store = tmp xs store
                   | otherwise = tmp xs (x:store)

unique' :: String -> String                   
unique' [] = []
unique' (x:xs) = x: unique' (filter (/=x)xs)

countThem :: String -> [(Char, Int)]
countThem xs = let u = unique xs
               in [(x, length (filter (==x) xs)) |x<-u]
Try it!
  • Create a function that generates all combinations of given length from the characters from given string. You can assume, that all character are unique and the given length is not bigger then the length of this string.
Video logo.png
combinations :: Int -> String -> [String]
*Main> combinations 3 "abcdef"
["abc","abd","abe",...]
combinations :: Int -> String -> [String]
combinations 1 xs = [[x]| x<-xs]
combinations n (x:xs) | n == length (x:xs) = [(x:xs)]
                      |otherwise = [[x] ++ y |y<-combinations (n-1) xs ] 
                                    ++ (combinations n xs)
Try it!

Operators

  • Define following functions that performs corresponding logic operations: not', and', or', nand', xor', impl', equ'
  • Define the 'standard' priority for all these functions, if they are used as operators.
  • Create a function that prints the truth table of a given logical expression for two variables.
table :: (Bool -> Bool -> Bool) -> IO ()
table (\a b -> (and' a (or' a b)))                                                                              
True  True  True
True  False True
False True  False
False False False
not' :: Bool -> Bool
not' True = False
not' False = True
infixl 5 `not'` 

and' :: Bool -> Bool -> Bool
and' True True = True
and' _ _ = False
infixl 4 `and'` 

or' :: Bool -> Bool -> Bool
or' False False = False
or' _ _ = True
infixl 3 `or'` 

nand' :: Bool -> Bool -> Bool
nand' x y = not' (and' x y)
infixl 4 `nand'` 

xor' :: Bool -> Bool -> Bool
xor' x y = x/=y
infixl 3 `xor'` 

impl' :: Bool -> Bool -> Bool
impl' True False = False
impl' _ _ = True
infixl 2 `impl'` 

equ' :: Bool -> Bool -> Bool
equ' x y = x == y
infixl 7 `equ'` 

table :: (Bool -> Bool -> Bool) -> IO ()
table expr = putStr (concat [nicePrint [x,y,(expr x y)] |x<-[True,False], y<-[True,False]])

nicePrint :: [Bool] -> String
nicePrint xs = concat [show x++"\t"| x<-xs] ++ "\n"
Try it!
  • Extend the previously defined function to accept any number of variables (the number of variables will be given as a first parameter).
tablen :: Int -> ([Bool] -> Bool) -> IO ()
 tablen 3 (\[a,b,c] -> a `and'` (b `or'` c) `equ'` a `and'` b `or'` a `and'` c)
True   True   True   => True
True   True   False  => True
True   False  True   => True
True   False  False  => False
False  True   True   => False
False  True   False  => False
False  False  True   => False
False  False  False  => False
tablen :: Int -> ([Bool] -> Bool) -> IO ()
tablen n f = putStr(concat [nicePrint x ++ " => " ++ show(f x) ++ "\n" |x<-allValues n]) where 
  allValues 1 = [[True], [False]]
  allValues n = [x:y| x<-[True,False], y<-allValues (n-1)]

  nicePrint :: [Bool] -> String
  nicePrint xs = concat [show x++"\t"| x<-xs]
Try it!