Difference between revisions of "FP Homework 1"
(Marked this version for translation) |
|||
Line 52: | Line 52: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
<syntaxhighlight lang="Haskell" class="myDark" > | <syntaxhighlight lang="Haskell" class="myDark" > | ||
− | Prelude>pp( ticktack (8,8) [(1,1),(8,8),(2,2, | + | Prelude>pp(ticktack (8,8) [(1,1),(8,8),(2,2),(3,3),(4,2),(3,2)]) |
---------- | ---------- | ||
| o| | | o| |
Revision as of 10:40, 5 November 2019
Contents
Basic notes
In all exercises you are required to write something to standard output. You can use the same strategy as in Laboratory 7.
Lets define a type for the result:
type Result = [String]
Now, if you want to print this result nicely on the screen, you can use:
pp :: Result -> IO ()
pp x = putStr (concat (map (++"\n") x))
1 - Chess position
Implement the function chess
which has 2 arguments of the type [String]
. Each of these strings in both lists contain 3 characters:
- first stands for chess piece ('K' - king, 'Q' - queen, 'R' - rook, 'B' - bishop, 'N' - knight, 'P' - pawn)
- second stands for column ('a'-'h')
- third is row ('1'-'8')
First list contains actual positions of white pieces and second list positions of black pieces. Print actual state of a chessboard in the way where '.' stands for empty square, capital letters mean white pieces and small letters mean black pieces. Each row and column should be labeled by its number or letter.
chess :: String -> String -> Result
Prelude> pp( chess["Ke1","Ra1","Rh1","Pa2","Be5"] ["Ke8","Ra8","Rh8","Pa7","Qd8","Bc8","Nb8"])
8rnbqk..r
7p.......
6........
5....B...
4........
3........
2P.......
1R...K..R
abcdefgh
2 - Ticktacktoe
Implement the function ticktack
which has 2 arguments. First argument is a tuple of natural numbers and defines the number of rows and columns of a play field. Second list contains a record of a match of ticktacktoe game given by coordinates on which played in turns player 'x' and player 'o'. Print actual state of the game in the way where play-field will be bordered by characters '-' and '|', empty squares ' ' and characters 'x' and 'o' will be on squares where the players have played.
ticktack::(Int,Int) -> [(Int,Int)] -> Result
Prelude>pp(ticktack (8,8) [(1,1),(8,8),(2,2),(3,3),(4,2),(3,2)])
----------
| o|
| |
| |
| |
| |
| o |
| xox |
|x |
----------
3 - Maze
Implement the function maze
which has 2 arguments. First argument is a list of strings representing a maze row by row from top to bottom ('*' - wall, ' ' - empty square, 's' - starting position). At the beginning we are at position 's'. Second argument is list of directions ('d' - down, 'u' - up, 'l' - left, 'r' - right). Each letter means move by one square in the given direction and on this new square character '.' is placed. Print actual state of a maze.
maze :: Result -> String -> Result
sampleInput = ["*********",
"*s* * *",
"* * * * *",
"* * * * *",
"* * *",
"******* *",
" *",
"*********"]
Prelude>pp(maze sampleInput "dddrruuurrdddrrddllllll")
*********
*s*...* *
*.*.*.* *
*.*.*.* *
*...*...*
*******.*
.......*
*********
4 - Minesweeper
Implement the function minesweeper
which has 1 argument of the type list of strings. The strings represent play field row by row from top to bottom ('*' - mine, ' ' - empty square). Print play field in a way where mines will be represented by '*' and on each square not containing a mine will be a number - count of all mines directly adjacent to this square (it can be adjacent vertically, horizontally or diagonally).
minesweeper :: Result -> Result
sampleInput = [" ",
" * ",
" * ",
" * ",
" *",
"*** ",
"* * ",
"*** "]
Prelude>pp(minesweeper sampleInput)
1110000
1*11110
1122*10
001*221
233211*
***2011
*8*3000
***2000
5 - Ships
Implement the function ships
which has 2 arguments. First argument is a list of strings representing play field of one player row by row from top to bottom ('o' - square containing a ship, ' ' - empty square). Second list contains coordinates of squares attacked by second player. Print actual state of a play in the way where every row and column will be labelled by its number or letter, 'o' will be square with ship not attacked yet, 'x' square with ship already attacked, '.' already attacked empty square, ' ' empty square not attacked yet. You can consider that the size of play-field is 10x10.
ships :: Result -> [(Char, Int)] -> Result
sampleInput = [" o o ",
" ooo ",
" oo ",
" ",
" ",
" o ",
" o ",
" o ",
" ",
" ",
" oooo "]
Prelude>pp(ships sampleInput [('a',1),('d',1),('d',2),('c',1),('b',1),('e',1),('f',1),('g',1),('c',7),('c',10)])
10 x o
9 ooo
8 oo
7 .
6
5 o
4 o
4 o
3
2 .
1..xxxx.
abcdefghij