Difference between revisions of "FP Laboratory 4"
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
* Create a function that takes first n elements of the list. | * Create a function that takes first n elements of the list. | ||
<syntaxhighlight lang="Haskell">take' :: Int -> [a] -> [a]</syntaxhighlight> | <syntaxhighlight lang="Haskell">take' :: Int -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> take' 2 [1,2,3] | ||
+ | [1,2] | ||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 17: | Line 21: | ||
* Create a function that takes the remaining list after the first n elements. | * Create a function that takes the remaining list after the first n elements. | ||
<syntaxhighlight lang="Haskell">drop' :: Int -> [a] -> [a]</syntaxhighlight> | <syntaxhighlight lang="Haskell">drop' :: Int -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> drop' 2 [1,2,3] | ||
+ | [3] | ||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 30: | Line 38: | ||
* Create a function that find the smallest element in the list. Consider input restrictions. | * Create a function that find the smallest element in the list. Consider input restrictions. | ||
<syntaxhighlight lang="Haskell">minimum' :: [a] -> a -- Is this right?</syntaxhighlight> | <syntaxhighlight lang="Haskell">minimum' :: [a] -> a -- Is this right?</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> minimum' [1,3,4,0] | ||
+ | 0 | ||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 43: | Line 55: | ||
* Find all integer divisors of a given number. | * Find all integer divisors of a given number. | ||
<syntaxhighlight lang="Haskell">divisors :: Int -> [Int]</syntaxhighlight> | <syntaxhighlight lang="Haskell">divisors :: Int -> [Int]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 66: | Line 81: | ||
* Create a function that merge two lists into one list of tuples. | * Create a function that merge two lists into one list of tuples. | ||
<syntaxhighlight lang="Haskell">zipThem:: [a] -> [b] -> [(a,b)]</syntaxhighlight> | <syntaxhighlight lang="Haskell">zipThem:: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 78: | Line 96: | ||
* Create a function that compute Cartesian product of two vectors. | * Create a function that compute Cartesian product of two vectors. | ||
<syntaxhighlight lang="Haskell">dotProduct :: [a] -> [b] -> [(a,b)]</syntaxhighlight> | <syntaxhighlight lang="Haskell">dotProduct :: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 100: | Line 121: | ||
* Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution. | * Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution. | ||
<syntaxhighlight lang="Haskell">fibonacci :: Int -> Int</syntaxhighlight> | <syntaxhighlight lang="Haskell">fibonacci :: Int -> Int</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 115: | Line 139: | ||
* Create a function that takes a string and converts all characters to upper case letters. | * Create a function that takes a string and converts all characters to upper case letters. | ||
<syntaxhighlight lang="Haskell">allToUpper :: String -> String</syntaxhighlight> | <syntaxhighlight lang="Haskell">allToUpper :: String -> String</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
+ | </syntaxhighlight> | ||
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 134: | Line 161: | ||
*Main> filter (<5) [1..10] | *Main> filter (<5) [1..10] | ||
[1,2,3,4] | [1,2,3,4] | ||
+ | </syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
</syntaxhighlight> | </syntaxhighlight> | ||
Revision as of 09:38, 30 September 2020
Functions working with lists
Implement following functions:
- Create a function that takes first n elements of the list.
take' :: Int -> [a] -> [a]
*Main> take' 2 [1,2,3]
[1,2]
take' :: Int -> [a] -> [a]
take' 0 _ = []
take' _ [] = []
take' n (x:xs) = x: take' (n-1) xs
- Create a function that takes the remaining list after the first n elements.
drop' :: Int -> [a] -> [a]
*Main> drop' 2 [1,2,3]
[3]
drop' :: Int -> [a] -> [a]
drop' 0 x = x
drop' _ [] = []
drop' n (_:xs) = drop' (n-1) xs
- Create a function that find the smallest element in the list. Consider input restrictions.
minimum' :: [a] -> a -- Is this right?
*Main> minimum' [1,3,4,0]
0
minimum' :: Ord a => [a] -> a
minimum' [x] = x
minimum' (x:y:z) | x < y = minimum' (x:z)
| otherwise = minimum' (y:z)
- Find all integer divisors of a given number.
divisors :: Int -> [Int]
divisors :: Int -> [Int]
divisors n = tmp n where
tmp 0 = []
tmp x | n `mod` x == 0 = x: tmp (x-1)
| otherwise = tmp (x-1)
divisors' :: Int -> [Int]
divisors' n = filter (\x -> n `mod` x == 0) [1..n]
divisors'' :: Int -> [Int]
divisors'' n = [x | x<-[1..n], n `mod` x == 0]
Functions working with lists and tuples
Implement following functions:
- Create a function that merge two lists into one list of tuples.
zipThem:: [a] -> [b] -> [(a,b)]
zipThem:: [a] -> [b] -> [(a,b)]
zipThem (x:xs) (y:ys) = (x,y) : zipThem xs ys
zipThem _ _ = []
- Create a function that compute Cartesian product of two vectors.
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct [] _ = []
dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where
tmp [] = []
tmp (b:bs) = (x,b) : tmp bs
dotProduct' :: [a] -> [b] -> [(a,b)]
dotProduct' xs ys = [(x,y)|x<-xs, y<-ys]
dotProduct'' :: [a] -> [b] -> [(a,b)]
dotProduct'' x y =
zip (concat (map (replicate (length y)) x))
(concat (replicate (length x) y))
- Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution.
fibonacci :: Int -> Int
fibonacci :: Int -> Int
fibonacci n = fst (tmp n) where
fibStep (a,b) = (b,a+b)
tmp 0 = (0,1)
tmp x = fibStep (tmp (x-1))
High-order functions
- Create a function that takes a string and converts all characters to upper case letters.
allToUpper :: String -> String
import Data.Char
allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]
allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
- Implement the
quicksort
algorithm. As a pivot use always the first element in the list. For dividing the list, use the functionfilter
.
quicksort :: (Ord a) => [a] -> [a]
*Main> filter (<5) [1..10]
[1,2,3,4]
quicksort :: (Ord a) => [a] -> [a]
quicksort (x:xs) = let lp = filter (< x) xs
rp = filter (>= x) xs
in quicksort lp ++ [x] ++ quicksort rp