Difference between revisions of "PFP Laboratory 2"
Jump to navigation
Jump to search
(Created page with "== Simple functions working with list == Implement following functions: * Create a function that computes length of a list. <syntaxhighlight lang="Haskell">length' :: [a] -> I...") |
|||
Line 216: | Line 216: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
[[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BEBLH60352]] | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BEBLH60352]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | == Advanced functions working with lists == <!--T:1--> | ||
+ | Implement following functions: | ||
+ | |||
+ | * Create a function that takes first n elements of the list. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">take' :: Int -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> take' 2 [1,2,3] | ||
+ | [1,2] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | take' :: Int -> [a] -> [a] | ||
+ | take' 0 _ = [] | ||
+ | take' _ [] = [] | ||
+ | take' n (x:xs) = x: take' (n-1) xs | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that takes the remaining list after the first n elements. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">drop' :: Int -> [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> drop' 2 [1,2,3] | ||
+ | [3] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | drop' :: Int -> [a] -> [a] | ||
+ | drop' 0 x = x | ||
+ | drop' _ [] = [] | ||
+ | drop' n (_:xs) = drop' (n-1) xs | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that find the smallest element in the list. Consider input restrictions. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">minimum' :: [a] -> a -- Is this right?</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | |||
+ | *Main> minimum' [1,3,4,0] | ||
+ | 0 | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | minimum' :: Ord a => [a] -> a | ||
+ | minimum' [x] = x | ||
+ | minimum' (x:y:z) | x < y = minimum' (x:z) | ||
+ | | otherwise = minimum' (y:z) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Find all integer divisors of a given number. | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/8iKGkcOlzpI]]</div> | ||
+ | <syntaxhighlight lang="Haskell">divisors :: Int -> [Int]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> divisors 32 | ||
+ | [1,2,4,8,16,32] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | divisors :: Int -> [Int] | ||
+ | divisors n = tmp n where | ||
+ | tmp 0 = [] | ||
+ | tmp x | n `mod` x == 0 = x: tmp (x-1) | ||
+ | | otherwise = tmp (x-1) | ||
+ | |||
+ | divisors' :: Int -> [Int] | ||
+ | divisors' n = filter (\x -> n `mod` x == 0) [1..n] | ||
+ | |||
+ | divisors'' :: Int -> [Int] | ||
+ | divisors'' n = [x | x<-[1..n], n `mod` x == 0] | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | == Functions working with lists and tuples == | ||
+ | Implement following functions: | ||
+ | * Create a function that merge two lists into one list of tuples. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">zipThem:: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> zipThem [1,2,3] "ABCD" | ||
+ | [(1,'A'),(2,'B'),(3,'C')] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | zipThem:: [a] -> [b] -> [(a,b)] | ||
+ | zipThem (x:xs) (y:ys) = (x,y) : zipThem xs ys | ||
+ | zipThem _ _ = [] | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that compute Cartesian product of two vectors. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">dotProduct :: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> dotProduct [1..4] "ABC" | ||
+ | [(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | dotProduct :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct [] _ = [] | ||
+ | dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where | ||
+ | tmp [] = [] | ||
+ | tmp (b:bs) = (x,b) : tmp bs | ||
+ | |||
+ | dotProduct' :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct' xs ys = [(x,y)|x<-xs, y<-ys] | ||
+ | |||
+ | dotProduct'' :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct'' x y = | ||
+ | zip (concat (map (replicate (length y)) x)) | ||
+ | (concat (replicate (length x) y)) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution. | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/Sge0DXXI36k]]</div> | ||
+ | <syntaxhighlight lang="Haskell">fibonacci :: Int -> Int</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> fibonacci 12 | ||
+ | 144 | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | fibonacci :: Int -> Int | ||
+ | fibonacci n = fst (tmp n) where | ||
+ | fibStep (a,b) = (b,a+b) | ||
+ | tmp 0 = (0,1) | ||
+ | tmp x = fibStep (tmp (x-1)) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | == High-order functions == | ||
+ | * Create a function that takes a string and converts all characters to upper case letters. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">allToUpper :: String -> String</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> allToUpper "aAbc" | ||
+ | "AABC" | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | import Data.Char | ||
+ | |||
+ | allToUpper :: String -> String | ||
+ | allToUpper xs = [toUpper x |x<-xs] | ||
+ | |||
+ | allToUpper' :: String -> String | ||
+ | allToUpper' xs = map toUpper xs | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Implement the [https://en.wikipedia.org/wiki/Quicksort <code>quicksort</code>] algorithm. As a pivot use always the first element in the list. For dividing the list, use the function <code>filter</code>. | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/Sj8cbRv89To]]</div> | ||
+ | <syntaxhighlight lang="Haskell">quicksort :: (Ord a) => [a] -> [a]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> filter (<5) [1..10] | ||
+ | [1,2,3,4] | ||
+ | </syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> quicksort [1,5,3,7,9,5,2,1] | ||
+ | [1,1,2,3,5,5,7,9] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | quicksort :: (Ord a) => [a] -> [a] | ||
+ | quicksort [] = [] | ||
+ | quicksort (x:xs) = let lp = filter (< x) xs | ||
+ | rp = filter (>= x) xs | ||
+ | in quicksort lp ++ [x] ++ quicksort rp | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
</div> | </div> | ||
<div style="clear:both"></div> | <div style="clear:both"></div> |
Revision as of 10:04, 29 September 2022
Contents
Simple functions working with list
Implement following functions:
- Create a function that computes length of a list.
length' :: [a] -> Int
*Main> length' "ABCD"
4
- Create a function that sums the list of integers.
sumIt :: [Int] -> Int
*Main> sumIt [1,2,3]
6
- Create a function that returns the first element in the list.
getHead :: [a] -> a
*Main> getHead [1,2,3]
1
- Create a function that returns the last element in the list.
getLast :: [a] -> a
*Main> getLast [1,2,3]
3
getLast :: [a] -> a
getLast [x] = x
getLast (x:xs) = getLast xs
getLast' :: [a] -> a
getLast' (x:xs) | length xs == 0 = x
| otherwise = getLast' xs
- Create a function that checks if an element is a member of the list.
isElement :: Eq a => a -> [a] -> Bool
*Main> isElement 2 [1,2,3]
True
isElement :: Eq a => a -> [a] -> Bool
isElement _ [] = False
isElement a (x:xs) | a == x = True
| otherwise = isElement a xs
- Create a function that returns the list without the first element.
getTail :: [a] -> [a]
*Main> getTail [1,2,3]
[2,3]
- Create a function that returns the list without the last element.
getInit :: [a] -> [a]
*Main> getInit [1,2,3]
[1,2]
- Create a function that merge two lists into one list.
combine :: [a] -> [a] -> [a]
*Main> combine [1,2,3] [4,5]
[1,2,3,4,5]
- Create a function that finds the maximum in the list of integers.
max' :: [Int] -> Int
*Main> max' [3,1,7,5]
7
max' :: [Int] -> Int
max' [x] = x
max' (x:y:z) | x > y = max' (x:z)
| otherwise = max' (y:z)
max'' :: [Int] -> Int
max'' (y:ys) = tmp y ys where
tmp a [] = a
tmp a (x:xs) | x > a = tmp x xs
|otherwise = tmp a xs
- Create a function that reverse a list.
reverse' :: [a] -> [a]
*Main> reverse' [3,1,7,5]
[5,7,1,3]
reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = (reverse' xs) ++ [x]
reverse'' :: [a] -> [a]
reverse'' n = tmp n []
where tmp [] ys = ys
tmp (x:xs) ys = tmp xs (x:ys)
- Create a function that product scalar multiplication if two vectors.
scalar :: [Int] -> [Int] -> Int
*Main> scalar [1,2,3] [4,5,6]
32
Advanced functions working with lists
Implement following functions:
- Create a function that takes first n elements of the list.
take' :: Int -> [a] -> [a]
*Main> take' 2 [1,2,3]
[1,2]
- Create a function that takes the remaining list after the first n elements.
drop' :: Int -> [a] -> [a]
*Main> drop' 2 [1,2,3]
[3]
- Create a function that find the smallest element in the list. Consider input restrictions.
minimum' :: [a] -> a -- Is this right?
*Main> minimum' [1,3,4,0]
0
minimum' :: Ord a => [a] -> a
minimum' [x] = x
minimum' (x:y:z) | x < y = minimum' (x:z)
| otherwise = minimum' (y:z)
- Find all integer divisors of a given number.
divisors :: Int -> [Int]
*Main> divisors 32
[1,2,4,8,16,32]
divisors :: Int -> [Int]
divisors n = tmp n where
tmp 0 = []
tmp x | n `mod` x == 0 = x: tmp (x-1)
| otherwise = tmp (x-1)
divisors' :: Int -> [Int]
divisors' n = filter (\x -> n `mod` x == 0) [1..n]
divisors'' :: Int -> [Int]
divisors'' n = [x | x<-[1..n], n `mod` x == 0]
Functions working with lists and tuples
Implement following functions:
- Create a function that merge two lists into one list of tuples.
zipThem:: [a] -> [b] -> [(a,b)]
*Main> zipThem [1,2,3] "ABCD"
[(1,'A'),(2,'B'),(3,'C')]
- Create a function that compute Cartesian product of two vectors.
dotProduct :: [a] -> [b] -> [(a,b)]
*Main> dotProduct [1..4] "ABC"
[(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')]
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct [] _ = []
dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where
tmp [] = []
tmp (b:bs) = (x,b) : tmp bs
dotProduct' :: [a] -> [b] -> [(a,b)]
dotProduct' xs ys = [(x,y)|x<-xs, y<-ys]
dotProduct'' :: [a] -> [b] -> [(a,b)]
dotProduct'' x y =
zip (concat (map (replicate (length y)) x))
(concat (replicate (length x) y))
- Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution.
fibonacci :: Int -> Int
*Main> fibonacci 12
144
fibonacci :: Int -> Int
fibonacci n = fst (tmp n) where
fibStep (a,b) = (b,a+b)
tmp 0 = (0,1)
tmp x = fibStep (tmp (x-1))
High-order functions
- Create a function that takes a string and converts all characters to upper case letters.
allToUpper :: String -> String
*Main> allToUpper "aAbc"
"AABC"
import Data.Char
allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]
allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
- Implement the
quicksort
algorithm. As a pivot use always the first element in the list. For dividing the list, use the functionfilter
.
quicksort :: (Ord a) => [a] -> [a]
*Main> filter (<5) [1..10]
[1,2,3,4]
*Main> quicksort [1,5,3,7,9,5,2,1]
[1,1,2,3,5,5,7,9]