Difference between revisions of "PFP Laboratory 3"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
+ | == Functions working with lists and tuples == | ||
+ | Implement following functions: | ||
+ | * Create a function that merge two lists into one list of tuples. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">zipThem:: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> zipThem [1,2,3] "ABCD" | ||
+ | [(1,'A'),(2,'B'),(3,'C')] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | zipThem:: [a] -> [b] -> [(a,b)] | ||
+ | zipThem (x:xs) (y:ys) = (x,y) : zipThem xs ys | ||
+ | zipThem _ _ = [] | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that compute Cartesian product of two vectors. | ||
+ | |||
+ | <syntaxhighlight lang="Haskell">dotProduct :: [a] -> [b] -> [(a,b)]</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> dotProduct [1..4] "ABC" | ||
+ | [(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | dotProduct :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct [] _ = [] | ||
+ | dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where | ||
+ | tmp [] = [] | ||
+ | tmp (b:bs) = (x,b) : tmp bs | ||
+ | |||
+ | dotProduct' :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct' xs ys = [(x,y)|x<-xs, y<-ys] | ||
+ | |||
+ | dotProduct'' :: [a] -> [b] -> [(a,b)] | ||
+ | dotProduct'' x y = | ||
+ | zip (concat (map (replicate (length y)) x)) | ||
+ | (concat (replicate (length x) y)) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution. | ||
+ | |||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/Sge0DXXI36k]]</div> | ||
+ | <syntaxhighlight lang="Haskell">fibonacci :: Int -> Int</syntaxhighlight> | ||
+ | <syntaxhighlight lang="Haskell" class="myDark"> | ||
+ | *Main> fibonacci 12 | ||
+ | 144 | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | fibonacci :: Int -> Int | ||
+ | fibonacci n = fst (tmp n) where | ||
+ | fibStep (a,b) = (b,a+b) | ||
+ | tmp 0 = (0,1) | ||
+ | tmp x = fibStep (tmp (x-1)) | ||
+ | </syntaxhighlight> | ||
+ | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BVU17842]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
== High-order functions == | == High-order functions == | ||
* Create a function that takes a string and converts all characters to upper case letters. | * Create a function that takes a string and converts all characters to upper case letters. |
Revision as of 10:50, 29 September 2022
Contents
Functions working with lists and tuples
Implement following functions:
- Create a function that merge two lists into one list of tuples.
zipThem:: [a] -> [b] -> [(a,b)]
*Main> zipThem [1,2,3] "ABCD"
[(1,'A'),(2,'B'),(3,'C')]
- Create a function that compute Cartesian product of two vectors.
dotProduct :: [a] -> [b] -> [(a,b)]
*Main> dotProduct [1..4] "ABC"
[(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')]
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct [] _ = []
dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where
tmp [] = []
tmp (b:bs) = (x,b) : tmp bs
dotProduct' :: [a] -> [b] -> [(a,b)]
dotProduct' xs ys = [(x,y)|x<-xs, y<-ys]
dotProduct'' :: [a] -> [b] -> [(a,b)]
dotProduct'' x y =
zip (concat (map (replicate (length y)) x))
(concat (replicate (length x) y))
- Create a function that computes n-th number in the Fibonacci sequence. The function should use tuples in the solution.
fibonacci :: Int -> Int
*Main> fibonacci 12
144
fibonacci :: Int -> Int
fibonacci n = fst (tmp n) where
fibStep (a,b) = (b,a+b)
tmp 0 = (0,1)
tmp x = fibStep (tmp (x-1))
High-order functions
- Create a function that takes a string and converts all characters to upper case letters.
allToUpper :: String -> String
*Main> allToUpper "aAbc"
"AABC"
import Data.Char
allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]
allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
- Implement the
quicksort
algorithm. As a pivot use always the first element in the list. For dividing the list, use the functionfilter
.
quicksort :: (Ord a) => [a] -> [a]
*Main> filter (<5) [1..10]
[1,2,3,4]
*Main> quicksort [1,5,3,7,9,5,2,1]
[1,1,2,3,5,5,7,9]
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = let lp = filter (< x) xs
rp = filter (>= x) xs
in quicksort lp ++ [x] ++ quicksort rp
List comprehension
Using the list comprehension implement following functions:
- Create a function that generates a list of all odd numbers in given interval.
oddList :: Int -> Int -> [Int]
*Main> oddList 1 10
[1,3,5,7,9]
- Create a function that removes all upper case letters from a string.
removeAllUpper :: String -> String
*Main> removeAllUpper "ABCabcABC"
"abc"
import Data.Char
removeAllUpper :: String -> String
removeAllUpper xs = [ x |x<-xs, not (isUpper x)]
- Create functions that computes union and intersection of two sets.
union :: Eq a => [a] -> [a] -> [a]
intersection :: Eq a => [a] -> [a] -> [a]
*Main> union [1..5] [3..10]
[1,2,3,4,5,6,7,8,9,10]
*Main> intersection [1..5] [3..10]
[3,4,5]
union :: Eq a => [a] -> [a] -> [a]
union xs ys = xs ++ [y| y<-ys, not (elem y xs)]
intersection :: Eq a => [a] -> [a] -> [a]
intersection xs ys = [y| y<-ys, elem y xs]
More complex functions
- Create a function that count the number of occurrences of all characters from a given string.
countThem :: String -> [(Char, Int)]
*Main>countThem "hello hello hello"
[('h',3),('e',3),('l',6),('o',3),(' ',2)]
unique :: String -> String
unique n = reverse(tmp n "") where
tmp [] store = store
tmp (x:xs) store | x `elem` store = tmp xs store
| otherwise = tmp xs (x:store)
unique' :: String -> String
unique' [] = []
unique' (x:xs) = x: unique' (filter (/=x)xs)
countThem :: String -> [(Char, Int)]
countThem xs = let u = unique xs
in [(x, length (filter (==x) xs)) |x<-u]
- Create a function that generates all combinations of given length from the characters from given string. You can assume, that all character are unique and the given length is not bigger then the length of this string.
combinations :: Int -> String -> [String]
*Main> combinations 3 "abcdef"
["abc","abd","abe",...]
combinations :: Int -> String -> [String]
combinations 1 xs = [[x]| x<-xs]
combinations n (x:xs) | n == length (x:xs) = [(x:xs)]
|otherwise = [[x] ++ y |y<-combinations (n-1) xs ]
++ (combinations n xs)
Operators
- Define following functions that performs corresponding logic operations:
not', and', or', nand', xor', impl', equ'
- Define the 'standard' priority for all these functions, if they are used as operators.
- Create a function that prints the truth table of a given logical expression for two variables.
table :: (Bool -> Bool -> Bool) -> IO ()
table (\a b -> (and' a (or' a b)))
True True True
True False True
False True False
False False False
not' :: Bool -> Bool
not' True = False
not' False = True
infixl 5 `not'`
and' :: Bool -> Bool -> Bool
and' True True = True
and' _ _ = False
infixl 4 `and'`
or' :: Bool -> Bool -> Bool
or' False False = False
or' _ _ = True
infixl 3 `or'`
nand' :: Bool -> Bool -> Bool
nand' x y = not' (and' x y)
infixl 4 `nand'`
xor' :: Bool -> Bool -> Bool
xor' x y = x/=y
infixl 3 `xor'`
impl' :: Bool -> Bool -> Bool
impl' True False = False
impl' _ _ = True
infixl 2 `impl'`
equ' :: Bool -> Bool -> Bool
equ' x y = x == y
infixl 7 `equ'`
table :: (Bool -> Bool -> Bool) -> IO ()
table expr = putStr (concat [nicePrint [x,y,(expr x y)] |x<-[True,False], y<-[True,False]])
nicePrint :: [Bool] -> String
nicePrint xs = concat [show x++"\t"| x<-xs] ++ "\n"
- Extend the previously defined function to accept any number of variables (the number of variables will be given as a first parameter).
tablen :: Int -> ([Bool] -> Bool) -> IO ()
tablen 3 (\[a,b,c] -> a `and'` (b `or'` c) `equ'` a `and'` b `or'` a `and'` c)
True True True => True
True True False => True
True False True => True
True False False => False
False True True => False
False True False => False
False False True => False
False False False => False
tablen :: Int -> ([Bool] -> Bool) -> IO ()
tablen n f = putStr(concat [nicePrint x ++ " => " ++ show(f x) ++ "\n" |x<-allValues n]) where
allValues 1 = [[True], [False]]
allValues n = [x:y| x<-[True,False], y<-allValues (n-1)]
nicePrint :: [Bool] -> String
nicePrint xs = concat [show x++"\t"| x<-xs]