Difference between revisions of "PFP Laboratory 5"
Jump to navigation
Jump to search
(Created page with " == User defined data types and type classes == <div style="float: right"> 80px|link=https://youtu.be/lo0pdwWoSx4</div> Consider following representa...") |
|||
Line 137: | Line 137: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
[[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BHV96059]] | [[File:Tryit.png|center|60px|Try it!|link=https://rextester.com/BHV96059]] | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | == Binary Trees == | ||
+ | * Create a data type <code>Tree</code> that defines binary tree where values are stored in leaves and also in branches. | ||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | data Tree a = Leaf a | ||
+ | | Branch a (Tree a) (Tree a) deriving (Show) | ||
+ | </syntaxhighlight> | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Prepare an example of a binary tree. | ||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | testTree1 :: Tree Int | ||
+ | testTree1 = Branch 12 (Branch 23 (Leaf 34) (Leaf 45)) (Leaf 55) | ||
+ | |||
+ | testTree2 :: Tree Char | ||
+ | testTree2 = Branch 'a' (Branch 'b' (Leaf 'c') (Leaf 'd')) (Leaf 'e') | ||
+ | </syntaxhighlight> | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that sums all values stored in the tree. | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | sum' :: Tree Int -> Int | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | sum' :: Tree Int -> Int | ||
+ | sum' (Leaf x) = x | ||
+ | sum' (Branch x l r) = sum' l + x + sum' r | ||
+ | </syntaxhighlight> | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * Create a function that extracts all values from the tree into an list. | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | toList :: Tree a -> [a] | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | toList :: Tree a -> [a] | ||
+ | toList (Leaf x) = [x] | ||
+ | toList (Branch x l r) = toList l ++ [x] ++ toList r | ||
+ | </syntaxhighlight> | ||
+ | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
+ | * One possibility how to represent a tree in a textual form is <code>a(b(d,e),c(e,f(g,h)))</code>. Create functions that are able to read and store a tree in such a notation. | ||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/b0EF9WQw-uw]]</div> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | toString :: Show a => Tree a -> String | ||
+ | fromString :: Read a => String -> Tree a | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
+ | <syntaxhighlight lang="Haskell"> | ||
+ | toString :: Show a => Tree a -> String | ||
+ | toString (Leaf x) = show x | ||
+ | toString (Branch x l r) = show x ++ "(" ++ (toString l) ++ "," ++ (toString r) ++ ")" | ||
+ | |||
+ | fromString :: Read a => String -> Tree a | ||
+ | fromString inp = fst (fromString' inp) where | ||
+ | fromString' :: Read a => String -> (Tree a,String) | ||
+ | fromString' inp = | ||
+ | let | ||
+ | before = takeWhile (\x -> x /='(' && x /=',' && x/=')') inp | ||
+ | after = dropWhile (\x -> x /='(' && x /=',' && x/=')') inp | ||
+ | value = read before | ||
+ | in if null after || head after /= '(' then (Leaf value, after) else | ||
+ | let | ||
+ | (l,after') = fromString' (tail after) | ||
+ | (r,after'') = fromString' (tail after') | ||
+ | in (Branch value l r, tail after'') | ||
+ | </syntaxhighlight> | ||
</div> | </div> | ||
<div style="clear:both"></div> | <div style="clear:both"></div> |
Revision as of 12:02, 29 September 2022
User defined data types and type classes
Consider following representation of expressions
data Expr = Num Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Char
deriving (Eq)
- Create function eval that evaluates expresions.
eval :: Expr -> Int
*Main> eval (Add (Num 1) (Num 2))
3
*Main> eval (Mul (Add (Num 1) (Num 2)) (Num 3))
9
eval :: Expr -> Int
eval (Num x) = x
eval (Add l r) = (eval l) + (eval r)
eval (Sub l r) = (eval l) - (eval r)
eval (Mul l r) = (eval l) * (eval r)
eval (Div l r) = (eval l) `div` (eval r)
- Create function showExpr that shows expression as a String.
showExpr :: Expr -> String
*Main> showExpr (Add (Num 1) (Num 2))
"1+2"
*Main> showExpr (Mul (Add (Num 1) (Num 2)) (Num 3))
"(1+2)*3"
*Main> showExpr (Mul (Add (Num 1) (Mul (Num 2) (Var 'x'))) (Mul (Num 3) (Var 'x')))
"(1+2*x)*3*x"
*Main> showExpr (Mul (Num 2) (Mul (Var 'x') (Var 'x')))
"2*x*x"
showExpr :: Expr -> String
showExpr expr = showExpr' expr NoOp
data Operation = Hi | HiDiv | Lo | LoSub | NoOp deriving (Eq)
showExpr' :: Expr -> Operation -> String
showExpr' (Num x) _ = show x
showExpr' (Var x) _ = [x]
showExpr' (Add l r) op = let
x = showExpr' l Lo ++"+"++showExpr' r Lo
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Sub l r) op = let
x = showExpr' l Lo ++"-"++showExpr' r LoSub
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Mul l r) op = let
x = showExpr' l Hi ++"*"++showExpr' r Hi
in if op == HiDiv
then "(" ++ x ++")"
else x
showExpr' (Div l r) op = let
x = showExpr' l Hi ++"/"++showExpr' r HiDiv
in if op == HiDiv
then "(" ++ x ++")"
else x
- Extend class Show to be usable with our expressions.
*Main> Add (Num 1) (Num 2)
"1+2"
*Main> Mul (Add (Num 1) (Num 2)) (Num 3)
"(1+2)*3"
*Main> Mul (Add (Num 1) (Mul (Num 2) (Var 'x'))) (Mul (Num 3) (Var 'x'))
"(1+2*x)*3*x"
*Main> Mul (Num 2) (Mul (Var 'x') (Var 'x'))
"2*x*x"
- Create function derivation representing symbolic derivation of a given expression.
deriv :: Expr-> Char -> Expr
*Main> deriv (Add (Num 1) (Num 2)) 'x'
0+0
*Main> deriv (Mul (Num 2) (Mul (Var 'x') (Var 'x'))) 'x'
0*x*x+2*(1*x+x*1)
*Main> deriv (Mul (Num 2) (Mul (Var 'x') (Var 'x'))) 'x'
0*x*x+2*(1*x+x*1)
deriv :: Expr-> Char -> Expr
deriv (Num _) _ = (Num 0)
deriv (Var x) y | x==y = (Num 1)
| otherwise = (Num 0)
deriv (Add l r) x = Add (deriv l x) (deriv r x)
deriv (Sub l r) x = Sub (deriv l x) (deriv r x)
deriv (Mul l r) x = Add (Mul (deriv l x) r) (Mul l (deriv r x))
deriv (Div l r) x =
Div
(Sub (Mul (deriv l x) r) (Mul l (deriv r x)))
(Mul r r)
Binary Trees
- Create a data type
Tree
that defines binary tree where values are stored in leaves and also in branches.
data Tree a = Leaf a
| Branch a (Tree a) (Tree a) deriving (Show)
- Prepare an example of a binary tree.
testTree1 :: Tree Int
testTree1 = Branch 12 (Branch 23 (Leaf 34) (Leaf 45)) (Leaf 55)
testTree2 :: Tree Char
testTree2 = Branch 'a' (Branch 'b' (Leaf 'c') (Leaf 'd')) (Leaf 'e')
- Create a function that sums all values stored in the tree.
sum' :: Tree Int -> Int
sum' :: Tree Int -> Int
sum' (Leaf x) = x
sum' (Branch x l r) = sum' l + x + sum' r
- Create a function that extracts all values from the tree into an list.
toList :: Tree a -> [a]
toList :: Tree a -> [a]
toList (Leaf x) = [x]
toList (Branch x l r) = toList l ++ [x] ++ toList r
- One possibility how to represent a tree in a textual form is
a(b(d,e),c(e,f(g,h)))
. Create functions that are able to read and store a tree in such a notation.
toString :: Show a => Tree a -> String
fromString :: Read a => String -> Tree a
toString :: Show a => Tree a -> String
toString (Leaf x) = show x
toString (Branch x l r) = show x ++ "(" ++ (toString l) ++ "," ++ (toString r) ++ ")"
fromString :: Read a => String -> Tree a
fromString inp = fst (fromString' inp) where
fromString' :: Read a => String -> (Tree a,String)
fromString' inp =
let
before = takeWhile (\x -> x /='(' && x /=',' && x/=')') inp
after = dropWhile (\x -> x /='(' && x /=',' && x/=')') inp
value = read before
in if null after || head after /= '(' then (Leaf value, after) else
let
(l,after') = fromString' (tail after)
(r,after'') = fromString' (tail after')
in (Branch value l r, tail after'')