Difference between revisions of "PFP Homework 2"

From Marek Běhálek Wiki
Jump to navigation Jump to search
(Created page with "= Automatons II = Usually, a finite automaton defined as: <math>(Q, \Sigma, \delta, q_0, F)</math> where Q represents states, next is input alphabet, then transitions (<math>...")
 
Line 21: Line 21:
 
ex2 :: Automaton  
 
ex2 :: Automaton  
 
ex2 = (3, "ab", [(0,'a',1), (0,'a',0), (0,'b',0), (1,'b',2)], 0, [2])
 
ex2 = (3, "ab", [(0,'a',1), (0,'a',0), (0,'b',0), (1,'b',2)], 0, [2])
 +
</syntaxhighlight>
 +
 +
 +
<syntaxhighlight lang="Haskell">
 +
data RegExpr = Epsilon
 +
            | Symbol Char
 +
            | Iteration RegExpr
 +
            | Concat RegExpr RegExpr
 +
            | Alter RegExpr RegExpr deriving (Eq, Show)
 
</syntaxhighlight>
 
</syntaxhighlight>
  

Revision as of 17:27, 10 October 2023

Automatons II

Usually, a finite automaton defined as: where Q represents states, next is input alphabet, then transitions (), is starting state and finally there is a set of final states.

In our case, a finite automaton is represented by types:

type Transition = (Int, Char, Int)
type Automaton = (Int, String, [Transition], Int, [Int])

where:

  • first number N defines number of states - states will be coded by integer numbers in interval ;
  • second element is a string containing the input symbols - you can safely assume; it contains no duplicities;
  • third is a list defining the trasition function - elementary transition is a triple (q1, a, q2) representing a transition: ;
  • is a number from interval ;
  • finally, there is a list of number representing possible states that are final in defined automaton.

As examples we can use following automatons:

ex1 :: Automaton 
ex1 = (3, "ab", [(0,'a',1), (0,'b',0), (1,'a',1), (1,'b',2), (2,'a',1), (2,'b',0)], 0, [2],)

ex2 :: Automaton 
ex2 = (3, "ab", [(0,'a',1), (0,'a',0), (0,'b',0), (1,'b',2)], 0, [2])


data RegExpr = Epsilon
             | Symbol Char
             | Iteration RegExpr
             | Concat RegExpr RegExpr
             | Alter RegExpr RegExpr deriving (Eq, Show)

Your task will be to create three functions:

  • First function checks if a given finite automaton is a deterministic finite automaton.
isDeterministic:: Automaton  -> Bool
ghci>isDeterministic ex1
True
ghci>isDeterministic ex2
False