FP Solution
Jump to navigation
Jump to search
import Data.Char
fact1 :: Int -> Int
fact1 0 = 1
fact1 n = n * fact1 (n-1)
fact2 :: Int -> Int
fact2 n | n==0 = 1
| otherwise = n * fact2 (n-1)
fact3 :: Int -> Int
fact3 n = if n==0 then 1 else n * fact3 (n-1)
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = tmp n 0 1 where
tmp 1 _ b = b
tmp x a b = tmp (x-1) b (a+b)
gcd' :: Int -> Int -> Int
gcd' a b | a > b = gcd' (a-b) b
| a < b = gcd' a (b-a)
| a==b = a
gcd2 :: Int -> Int -> Int
gcd2 a 0 = a
gcd2 a b = gcd2 b (a `mod` b)
isPrime :: Int -> Bool
isPrime 1 = False
isPrime y = isPrimeTest y (ceiling (sqrt (fromIntegral y)::Double))
where
isPrimeTest _ 1 = True
isPrimeTest n x | n `mod` x ==0 = False
| otherwise = isPrimeTest n (x-1)
length' :: [a] -> Int
length' [] = 0
length' (_:xs) = 1 + length' xs
sumIt :: [Int] -> Int
sumIt [] = 0
sumIt (x:xs) = x + sumIt xs
getHead :: [a] -> a
getHead (x:_) = x
getLast :: [a] -> a
getLast (x:xs) | length xs == 0 = x
| otherwise = getLast xs
isElement :: Eq a => a -> [a] -> Bool
isElement _ [] = False
isElement a (x:xs) | a == x = True
| otherwise = isElement a xs
getTail :: [a] -> [a]
getTail (_:xs) = xs
getInit :: [a] -> [a]
getInit [_] = []
getInit (x:xs) = x : getInit xs
combine :: [a] -> [a] -> [a]
combine [] y = y
combine (x:xs) y = x : combine xs y
max' :: [Int] -> Int
max' [x] = x
max' (x:y:z) | x > y = max' (x:z)
| otherwise = max' (y:z)
max2 :: [Int] -> Int
max2 (y:ys) = tmp y ys where
tmp a [] = a
tmp a (x:xs) | x > a = tmp x xs
|otherwise = tmp a xs
reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = (reverse' xs) ++ [x]
reverse'' :: [a] -> [a]
reverse'' n = tmp n []
where tmp [] ys = ys
tmp (x:xs) ys = tmp xs (x:ys)
take' :: Int -> [a] -> [a]
take' 0 _ = []
take' _ [] = []
take' n (x:xs) = x: take' (n-1) xs
drop' :: Int -> [a] -> [a]
drop' 0 x = x
drop' _ [] = []
drop' n (_:xs) = drop' (n-1) xs
minimum' :: Ord a => [a] -> a -- Is this right?
minimum' [x] = x
minimum' (x:y:z) | x < y = minimum' (x:z)
| otherwise = minimum' (y:z)
divisors :: Int -> [Int]
divisors n = tmp n where
tmp 0 = []
tmp x | n `mod` x == 0 = x: tmp (x-1)
| otherwise = tmp (x-1)
divisors' :: Int -> [Int]
divisors' n = filter (\x -> n `mod` x == 0) [1..n]
divisors'' :: Int -> [Int]
divisors'' n = [x | x<-[1..n], n `mod` x == 0]
zipThem:: [a] -> [b] -> [(a,b)]
zipThem (x:xs) (y:ys) = (x,y) : zipThem xs ys
zipThem _ _ = []
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct [] _ = []
dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where
tmp [] = []
tmp (b:bs) = (x,b) : tmp bs
dotProduct' :: [a] -> [b] -> [(a,b)]
dotProduct' xs ys = [(x,y)|x<-xs, y<-ys]
dotProduct'' :: [a] -> [b] -> [(a,b)]
dotProduct'' x y =
zip (concat (map (replicate (length y)) x))
(concat (replicate (length x) y))
fibonacci :: Int -> Int
fibonacci n = fst (tmp n) where
fibStep (a,b) = (b,a+b)
tmp 0 = (0,1)
tmp x = fibStep (tmp (x-1))
allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]
allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
quicksort :: (Ord a) => [a] -> [a]
quicksort (x:xs) = let lp = filter (< x) xs
rp = filter (>= x) xs
in quicksort lp ++ [x] ++ quicksort rp
oddList :: Int -> Int -> [Int]
oddList a b = [ x |x<-[a..b], odd x]
removeAllUpper :: String -> String
removeAllUpper xs = [ x |x<-xs, not (isUpper x)]
union :: Eq a => [a] -> [a] -> [a]
union xs ys = xs ++ [y| y<-ys, not (elem y xs)]
intersection :: Eq a => [a] -> [a] -> [a]
intersection xs ys = [y| y<-ys, elem y xs]
unique :: String -> String
unique n = reverse(tmp n "") where
tmp [] store = store
tmp (x:xs) store | x `elem` store = tmp xs store
| otherwise = tmp xs (x:store)
unique' :: String -> String
unique' [] = []
unique' (x:xs) = x: unique' (filter (/=x)xs)
countThem :: String -> [(Char, Int)]
countThem xs = let u = unique xs
in [(x, length (filter (==x) xs)) |x<-u]
isPrime :: Int -> Bool
isPrime n = null [x |x<-[2..ceiling (sqrt (fromIntegral n)::Double)], n `mod` x == 0]
goldbach :: Int-> [(Int, Int)]
goldbach n = let primes = [x |x<-[2..(n `div` 2)+1], isPrime x]
in [(x,n-x) |x<-primes, isPrime (n-x)]
goldbachList :: Int -> Int-> Int -> [(Int, Int)]
goldbachList a b limit = filter (\(x,_)-> x>limit) [head (goldbach x) | x<-[a..b], even x]
combinations :: Int -> String -> [String]
combinations 1 xs = [[x]| x<-xs]
combinations n (x:xs) | n == length (x:xs) = [(x:xs)]
|otherwise = [[x] ++ y |y<-combinations (n-1) xs ]
++ (combinations n xs)
not' :: Bool -> Bool
not' True = False
not' False = True
infixl 5 `not'`
and' :: Bool -> Bool -> Bool
and' True True = True
and' _ _ = False
infixl 4 `and'`
or' :: Bool -> Bool -> Bool
or' False False = False
or' _ _ = True
infixl 3 `or'`
nand' :: Bool -> Bool -> Bool
nand' x y = not' (and' x y)
infixl 4 `nand'`
xor' :: Bool -> Bool -> Bool
xor' x y = x/=y
infixl 3 `xor'`
impl' :: Bool -> Bool -> Bool
impl' True False = False
impl' _ _ = True
infixl 2 `impl'`
equ' :: Bool -> Bool -> Bool
equ' x y = x == y
infixl 7 `equ'`
tablen :: Int -> ([Bool] -> Bool) -> IO ()
tablen n f = putStr(concat [show x ++ " -> " ++ show(f x) ++ "\n" |x<-allValues n]) where
allValues 1 = [[True], [False]]
allValues n = [x:y| x<-[True,False], y<-allValues (n-1)]
huffman :: [(Char, Int)] -> [(Char, String)]
huffman input = let
prep = [ (y, [(x,"")] ) | (x,y)<-input]
in sortBy (\ (x,_) (y,_) -> compare x y) (step prep) where
step :: [(Int, [(Char, String)])] -> [(Char, String)]
step [(_, result) ] = result
step list = let ((a1, as2):(b1,bs2):rest) = sortBy (\ (x,_) (y,_) -> compare x y) list
in step ((a1+b1, [(x,'0':a2)|(x,a2)<-as2]++[(x,'1':b2)|(x,b2)<-bs2]) : rest)
type Pic = [String]
pic :: Pic
pic = [ "....#....",
"...###...",
"..#.#.#..",
".#..#..#.",
"....#....",
"....#....",
"....#####"]
pp :: Pic -> IO ()
pp x = putStr (concat (map (++"\n") x))
flipV :: Pic -> Pic
flipV = map reverse
flipV' :: Pic -> Pic
flipV' xs = [reverse x|x<-xs]
flipH :: Pic -> Pic
flipH = reverse
above :: Pic -> Pic -> Pic
above x y = x ++ y
sideBySide :: Pic -> Pic -> Pic
sideBySide xs ys = map (\(x,y) -> x ++ y)(zip xs ys)
sideBySide':: Pic -> Pic -> Pic
sideBySide' (x:xs) (y:ys) = (x ++ y) : sideBySide' xs ys
sideBySide' _ _ = []
sideBySide'' :: Pic -> Pic -> Pic
sideBySide'' = zipWith (++)
toRow :: String -> Pic
toRow xs = map (\x -> [x]) xs -- [[x]|x<-xs]
rotateR :: Pic -> Pic
rotateR [x] = toRow x
rotateR (x:xs) = (rotateR xs) `sideBySide` (toRow x)
rotateR' :: Pic -> Pic
rotateR' x = foldl1 sideBySide (reverse (map toRow x))
rotateL :: Pic -> Pic
rotateL [x] = reverse(toRow x)
rotateL (x:xs) = reverse(toRow x) `sideBySide` (rotateL xs)
rotateL' :: Pic -> Pic
rotateL' x = foldl1 sideBySide (map (reverse.toRow) x)
zoom :: Int -> Pic -> Pic
zoom n xs = [concat(map (replicate n) x)|x<-concat (map (replicate n) xs)]
data Expr = Num Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Char
deriving (Eq)
testExpr1 :: Expr
testExpr1 = Sub (Num 1) (Add (Num 2) (Num 3))
testExpr2 :: Expr
testExpr2 = Add (Mul (Add (Num 1) (Num 2)) (Add (Num 4) (Var 'x')))
(Mul (Num 1) (Var 'x'))
eval :: Expr -> Int
eval (Num x) = x
eval (Add l r) = (eval l) + (eval r)
eval (Sub l r) = (eval l) - (eval r)
eval (Mul l r) = (eval l) * (eval r)
eval (Div l r) = (eval l) `div` (eval r)
showExpr :: Expr -> String
showExpr expr = showExpr' expr NoOp
data Operation = Hi | HiDiv | Lo | LoSub | NoOp deriving (Eq)
showExpr' :: Expr -> Operation -> String
showExpr' (Num x) _ = show x
showExpr' (Var x) _ = [x]
showExpr' (Add l r) op = let
x = showExpr' l Lo ++"+"++showExpr' r Lo
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Sub l r) op = let
x = showExpr' l Lo ++"-"++showExpr' r LoSub
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Mul l r) op = let
x = showExpr' l Hi ++"*"++showExpr' r Hi
in if op == HiDiv
then "(" ++ x ++")"
else x
showExpr' (Div l r) _ = showExpr' l Hi ++"/"++showExpr' r HiDiv
instance (Show Expr) where
show = showExpr
deriv :: Expr-> Char -> Expr
deriv (Num _) _ = (Num 0)
deriv (Var x) y | x==y = (Num 1)
| otherwise = (Num 0)
deriv (Add l r) x = Add (deriv l x) (deriv r x)
deriv (Sub l r) x = Sub (deriv l x) (deriv r x)
deriv (Mul l r) x = Add (Mul (deriv l x) r) (Mul l (deriv r x))
deriv (Div l r) x =
Div
(Sub (Mul (deriv l x) r) (Mul l (deriv r x)))
(Mul r r)
data Tree a = Leaf a
| Branch a (Tree a) (Tree a) deriving (Show)
testTree1 :: Tree Int
testTree1 = Branch 123 (Branch 234 (Leaf 34) (Leaf 4)) (Leaf 5555)
testTree2 :: Tree Char
testTree2 = Branch 'a' (Branch 'b' (Leaf 'c') (Leaf 'd')) (Leaf 'e')
sum' :: Tree Int -> Int
sum' (Leaf x) = x
sum' (Branch x l r) = sum' l + x + sum' r
toList :: Tree a -> [a]
toList (Leaf x) = [x]
toList (Branch x l r) = toList l ++ [x] ++ toList r
toString :: Show a => Tree a -> String
toString (Leaf x) = show x
toString (Branch x l r) = show x ++ "(" ++ (toString l) ++ "," ++ (toString r) ++ ")"
fromString :: Read a => String -> Tree a
fromString inp = fst (fromString' inp)
fromString' :: Read a => String -> (Tree a,String)
fromString' inp =
let
before = takeWhile (\x -> x /='(' && x /=',' && x/=')') inp
after = dropWhile (\x -> x /='(' && x /=',' && x/=')') inp
value = read before
in if null after || head after /= '(' then (Leaf value, after) else
let
(l,after') = fromString' (tail after)
(r,after'') = fromString' (tail after')
in (Branch value l r, tail after'')