FP Cvičení 4

From Marek Běhálek Wiki
Revision as of 20:27, 19 October 2021 by Fai0013 (talk | contribs) (Created page with "* Funkce která spočítá n-tý člen Fibonacciho posloupnosti. V řešení využijte n-tice.")
Jump to navigation Jump to search

Funkce pracující se seznamy

Implementujte následující funkce:

  • Funkce která odebere prvních n prvků ze seznamu.
take' :: Int -> [a] -> [a]
*Main> take' 2 [1,2,3]
[1,2]
take' :: Int -> [a] -> [a]
take' 0 _ = []
take' _ [] = []
take' n (x:xs) = x: take' (n-1) xs
Try it!
  • Funkce která vrátí zbytek seznamu po odebrání prvních n prvků.
drop' :: Int -> [a] -> [a]
*Main> drop' 2 [1,2,3]
[3]
drop' :: Int -> [a] -> [a]
drop' 0 x = x
drop' _ [] = []
drop' n (_:xs) = drop' (n-1) xs
Try it!
  • Funkce která najde nejmenší prvek v seznamu. Jaké bude omezení na vstupu?
minimum' :: [a] -> a -- Is this right?
*Main> minimum' [1,3,4,0]
0
minimum' :: Ord a => [a] -> a 
minimum' [x] = x
minimum' (x:y:z) | x < y = minimum' (x:z)
                 | otherwise = minimum' (y:z)
Try it!
  • Funkce která nalezne všechny celočíselné dělitele daného čísla.
Video logo.png
divisors :: Int -> [Int]
*Main> divisors 32  
[1,2,4,8,16,32]
divisors :: Int -> [Int]
divisors n = tmp n where
  tmp 0 = []
  tmp x | n `mod` x == 0 = x: tmp (x-1)
        | otherwise = tmp (x-1)

divisors' :: Int -> [Int]
divisors' n =  filter (\x -> n `mod` x == 0) [1..n] 

divisors'' :: Int -> [Int]
divisors'' n =  [x | x<-[1..n], n `mod` x == 0]
Try it!

Funkce pracující se seznamy a n-ticemi

Implementujte následující funkce:

  • Funkce která sloučí dva seznamy do jednoho seznamu dvojic.
zipThem:: [a] -> [b] -> [(a,b)]
*Main> zipThem [1,2,3] "ABCD"
[(1,'A'),(2,'B'),(3,'C')]
zipThem:: [a] -> [b] -> [(a,b)]
zipThem (x:xs) (y:ys) = (x,y) : zipThem xs ys
zipThem _ _ = []
Try it!
  • Funkce která spočítá Kartézský součin dvou vektorů.
dotProduct :: [a] -> [b] -> [(a,b)]
*Main> dotProduct [1..4] "ABC"
[(1,'A'),(1,'B'),(1,'C'),(2,'A'),(2,'B'),(2,'C'),(3,'A'),(3,'B'),(3,'C'),(4,'A'),(4,'B'),(4,'C')]
dotProduct :: [a] -> [b] -> [(a,b)]
dotProduct [] _ = []
dotProduct (x:xs) ys = tmp ys ++ dotProduct xs ys where
  tmp [] = []
  tmp (b:bs) = (x,b) : tmp bs

dotProduct' :: [a] -> [b] -> [(a,b)]  
dotProduct' xs ys = [(x,y)|x<-xs, y<-ys]

dotProduct'' :: [a] -> [b] -> [(a,b)]
dotProduct'' x y = 
  zip (concat (map (replicate (length y)) x))
                     (concat (replicate (length x) y))
Try it!
  • Funkce která spočítá n-tý člen Fibonacciho posloupnosti. V řešení využijte n-tice.
Video logo.png
fibonacci :: Int -> Int
*Main> fibonacci 12
144
fibonacci :: Int -> Int
fibonacci n = fst (tmp n) where
  fibStep (a,b) = (b,a+b)
  tmp 0 = (0,1)
  tmp x = fibStep (tmp (x-1))
Try it!

High-order functions

  • Create a function that takes a string and converts all characters to upper case letters.
allToUpper :: String -> String
*Main> allToUpper "aAbc"
"AABC"
import Data.Char

allToUpper :: String -> String
allToUpper xs = [toUpper x |x<-xs]                     

allToUpper' :: String -> String
allToUpper' xs = map toUpper xs
Try it!
  • Implement the quicksort algorithm. As a pivot use always the first element in the list. For dividing the list, use the function

filter.

Video logo.png
quicksort :: (Ord a) => [a] -> [a]
*Main> filter (<5) [1..10]
[1,2,3,4]
*Main> quicksort [1,5,3,7,9,5,2,1]
[1,1,2,3,5,5,7,9]
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = let lp = filter (< x) xs
                       rp = filter (>= x) xs
                   in quicksort lp ++ [x] ++ quicksort rp
Try it!