FP Cvičení 10
Jump to navigation
Jump to search
Binární strom
- Vytvořte datový typ
Tree
, který definuje binární strom, kde jsou hodnoty uloženy v listech a také ve větvích.
data Tree a = Leaf a
| Branch a (Tree a) (Tree a) deriving (Show)
- Připravte si příklad binárního stromu.
testTree1 :: Tree Int
testTree1 = Branch 12 (Branch 23 (Leaf 34) (Leaf 45)) (Leaf 55)
testTree2 :: Tree Char
testTree2 = Branch 'a' (Branch 'b' (Leaf 'c') (Leaf 'd')) (Leaf 'e')
- Vytvořte funkci, která sečte všechny hodnoty uložené ve stromu celých čísel.
sum' :: Tree Int -> Int
sum' :: Tree Int -> Int
sum' (Leaf x) = x
sum' (Branch x l r) = sum' l + x + sum' r
- Vytvořte funkci, která extrahuje všechny hodnoty ze stromu do seznamu.
toList :: Tree a -> [a]
toList :: Tree a -> [a]
toList (Leaf x) = [x]
toList (Branch x l r) = toList l ++ [x] ++ toList r
- Vytvořte funkci, která najde maximální hodnotu uloženou ve stromu.
maxTree :: Ord a => Tree a -> a
maxTree :: Ord a => Tree a -> a
maxTree (Leaf x) = x
maxTree (Branch x l r) = maximum [x, maxTree l, maxTree r]
- Vytvořte funkci, která vrátí maximální hloubku stromu.
depthTree :: Tree a -> Int
depthTree :: Tree a -> Int
depthTree (Leaf x) = 1
depthTree (Branch x l r) = max (depthTree l) (depthTree r) + 1
- Vytvořte funkci, která vrátí jako seznam ty prvky seznamu, které jsou větší než zadaná hodnota.
getGreaterElements :: Ord a => Tree a -> a -> [a]
getGreaterElements :: Ord a => Tree a -> a -> [a]
getGreaterElements (Leaf x) y | x > y = [x]
| otherwise = []
getGreaterElements (Branch x l r) y | x > y = [x] ++ getGreaterElements l y ++ getGreaterElements r y
| otherwise = getGreaterElements l y ++ getGreaterElements r y
- Jednou z možností, jak reprezentovat strom v textové podobě, je
a(b(d,e),c(e,f(g,h)))
. Vytvořte funkci, která bude schopna načíst a uložit strom z takového zápisu.
toString :: Show a => Tree a -> String
fromString :: Read a => String -> Tree a
toString :: Show a => Tree a -> String
toString (Leaf x) = show x
toString (Branch x l r) = show x ++ "(" ++ (toString l) ++ "," ++ (toString r) ++ ")"
fromString :: Read a => String -> Tree a
fromString inp = fst (fromString' inp) where
fromString' :: Read a => String -> (Tree a,String)
fromString' inp =
let
before = takeWhile (\x -> x /='(' && x /=',' && x/=')') inp
after = dropWhile (\x -> x /='(' && x /=',' && x/=')') inp
value = read before
in if null after || head after /= '(' then (Leaf value, after) else
let
(l,after') = fromString' (tail after)
(r,after'') = fromString' (tail after')
in (Branch value l r, tail after'')
Doplňková cvičení
- Vytvořte funkci, která spočítá všechny listy ve stromu.
leafCount :: Tree a -> Int
- Vytvořte funkci, která spočítá všechny větve stromu.
branchCount :: Tree a -> Int
- Vytvoření funkce, která zkontroluje, zda je daný prvek uložen ve stromu.
contains :: Eq a => Tree a -> a -> Bool
- Vytvoření funkce, která vrátí počet prvků větší než zadaná hodnota.
greaterThan :: Ord a => Tree a -> a -> Int
- Consider the following alternative definition of the binary tree.
data Tree2 a = Null | Branch a (Tree2 a) (Tree2 a)
- Is this definition equivalent to the previous one? If not, explain why and give an example of a tree that can be constructed with the first definition but not with the second one or vice versa.
- Implement all functions above adjusted for the alternative definition of the binary tree.
Abstract data types
- Create an implementation of the abstract data type
Stack
with following functions:
push :: a -> Stack a -> Stack a
pop :: Stack a -> Stack a
top :: Stack a -> a
isEmpty :: Stack a ->Bool
module Stack(Stack, emptyS, push, pop, top, isEmpty) where
data Stack a = Stack [a] deriving Show
emptyS :: Stack a
emptyS = Stack []
push :: a -> Stack a -> Stack a
push x (Stack y) = Stack (x:y)
pop :: Stack a -> Stack a
pop (Stack (_:xs)) = Stack xs
top :: Stack a -> a
top (Stack (x:_)) = x
isEmpty :: Stack a ->Bool
isEmpty (Stack []) = True
isEmpty _ = False
- Create an implementation of the abstract data type
Queue
with following functions:
isEmpty :: Queue a -> Bool
addQ :: a -> Queue a -> Queue a
remQ :: Queue a -> (a, Queue a)
module Queue(Queue, emptyQ, isEmptyQ, addQ, remQ) where
data Queue a = Qu [a] deriving Show
emptyQ :: Queue a
emptyQ = Qu []
isEmptyQ :: Queue a -> Bool
isEmptyQ (Qu q) = null q
addQ :: a -> Queue a -> Queue a
addQ x (Qu xs) = Qu (xs++[x])
remQ :: Queue a -> (a,Queue a)
remQ q@(Qu xs) | not (isEmptyQ q) = (head xs, Qu (tail xs))
| otherwise = error "remQ"