Difference between revisions of "FP Laboratory 9/cs"
Jump to navigation
Jump to search
(Created page with "Uvažujte následující reprezentaci výrazů") |
(Updating to match new version of source page) |
||
(4 intermediate revisions by one other user not shown) | |||
Line 15: | Line 15: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | * | + | * Implementujte funkci eval, která vyhodnocuje výrazy. |
<div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/AvThE0I4Iz8]]</div> | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/AvThE0I4Iz8]]</div> | ||
Line 41: | Line 41: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | * | + | * Implementujte funkci showExpr, která převede výraz na String. |
<div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/cPL1zEZHLh0]]</div> | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/cPL1zEZHLh0]]</div> | ||
Line 83: | Line 83: | ||
else x | else x | ||
showExpr' (Div l r) op = let | showExpr' (Div l r) op = let | ||
− | x = showExpr' l Hi ++"/"++showExpr' r | + | x = showExpr' l Hi ++"/"++showExpr' r HiDiv |
in if op == HiDiv | in if op == HiDiv | ||
then "(" ++ x ++")" | then "(" ++ x ++")" | ||
Line 92: | Line 92: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | * | + | * Rozšiřte třídu Show tak, aby ji bylo možno využít s našimi výrazy. |
<div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/NCAxJx_wJxI]]</div> | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/NCAxJx_wJxI]]</div> | ||
Line 115: | Line 115: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | * | + | * Implementujte funkci derivation reprezentující symbolickou derivaci daného výrazu. |
<syntaxhighlight lang="Haskell"> | <syntaxhighlight lang="Haskell"> |
Latest revision as of 07:41, 15 November 2021
Uživatelsky definované datové typy a typové třídy
Uvažujte následující reprezentaci výrazů
data Expr = Num Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Char
deriving (Eq)
- Implementujte funkci eval, která vyhodnocuje výrazy.
eval :: Expr -> Int
*Main> eval (Add (Num 1) (Num 2))
3
*Main> eval (Mul (Add (Num 1) (Num 2)) (Num 3))
9
eval :: Expr -> Int
eval (Num x) = x
eval (Add l r) = (eval l) + (eval r)
eval (Sub l r) = (eval l) - (eval r)
eval (Mul l r) = (eval l) * (eval r)
eval (Div l r) = (eval l) `div` (eval r)
- Implementujte funkci showExpr, která převede výraz na String.
showExpr :: Expr -> String
*Main> showExpr (Add (Num 1) (Num 2))
"1+2"
*Main> showExpr (Mul (Add (Num 1) (Num 2)) (Num 3))
"(1+2)*3"
*Main> showExpr (Mul (Add (Num 1) (Mul (Num 2) (Var 'x'))) (Mul (Num 3) (Var 'x')))
"(1+2*x)*3*x"
*Main> showExpr (Mul (Num 2) (Mul (Var 'x') (Var 'x')))
"2*x*x"
showExpr :: Expr -> String
showExpr expr = showExpr' expr NoOp
data Operation = Hi | HiDiv | Lo | LoSub | NoOp deriving (Eq)
showExpr' :: Expr -> Operation -> String
showExpr' (Num x) _ = show x
showExpr' (Var x) _ = [x]
showExpr' (Add l r) op = let
x = showExpr' l Lo ++"+"++showExpr' r Lo
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Sub l r) op = let
x = showExpr' l Lo ++"-"++showExpr' r LoSub
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Mul l r) op = let
x = showExpr' l Hi ++"*"++showExpr' r Hi
in if op == HiDiv
then "(" ++ x ++")"
else x
showExpr' (Div l r) op = let
x = showExpr' l Hi ++"/"++showExpr' r HiDiv
in if op == HiDiv
then "(" ++ x ++")"
else x
- Rozšiřte třídu Show tak, aby ji bylo možno využít s našimi výrazy.
*Main> Add (Num 1) (Num 2)
"1+2"
*Main> Mul (Add (Num 1) (Num 2)) (Num 3)
"(1+2)*3"
*Main> Mul (Add (Num 1) (Mul (Num 2) (Var 'x'))) (Mul (Num 3) (Var 'x'))
"(1+2*x)*3*x"
*Main> Mul (Num 2) (Mul (Var 'x') (Var 'x'))
"2*x*x"
- Implementujte funkci derivation reprezentující symbolickou derivaci daného výrazu.
deriv :: Expr-> Char -> Expr
*Main> deriv (Add (Num 1) (Num 2)) 'x'
0+0
*Main> deriv (Mul (Num 2) (Mul (Var 'x') (Var 'x'))) 'x'
0*x*x+2*(1*x+x*1)
*Main> deriv (Mul (Num 2) (Mul (Var 'x') (Var 'x'))) 'x'
0*x*x+2*(1*x+x*1)
deriv :: Expr-> Char -> Expr
deriv (Num _) _ = (Num 0)
deriv (Var x) y | x==y = (Num 1)
| otherwise = (Num 0)
deriv (Add l r) x = Add (deriv l x) (deriv r x)
deriv (Sub l r) x = Sub (deriv l x) (deriv r x)
deriv (Mul l r) x = Add (Mul (deriv l x) r) (Mul l (deriv r x))
deriv (Div l r) x =
Div
(Sub (Mul (deriv l x) r) (Mul l (deriv r x)))
(Mul r r)