Difference between revisions of "FP Laboratory 9"

From Marek Běhálek Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
 
<div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div>  
 
<div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div>  
<syntaxhighlight lang="Haskell">
 
 
Consider following representation of expressions
 
Consider following representation of expressions
  
 +
<syntaxhighlight lang="Haskell">
 
data Expr = Num Int
 
data Expr = Num Int
 
           | Add Expr Expr
 
           | Add Expr Expr

Revision as of 09:40, 29 October 2020

User defined data types and type classes

Video logo.png

Consider following representation of expressions

data Expr = Num Int
          | Add Expr Expr
          | Sub Expr Expr
          | Mul Expr Expr
          | Div Expr Expr
          | Var Char
	  deriving (Eq)
  • Create function eval that evaluates expresions.
    Video logo.png
eval :: Expr -> Int
eval :: Expr -> Int
eval (Num x) = x
eval (Add l r) =  (eval l) + (eval r)
eval (Sub l r) =  (eval l) - (eval r)
eval (Mul l r) =  (eval l) * (eval r)
eval (Div l r) =  (eval l) `div` (eval r)
  • Create function showExpr that shows expression as a String.
    Video logo.png
showExpr :: Expr -> String
showExpr :: Expr -> String
showExpr expr = showExpr' expr NoOp

data Operation = Hi | HiDiv | Lo | LoSub | NoOp deriving (Eq)

showExpr' :: Expr -> Operation -> String
showExpr' (Num x) _ = show x
showExpr' (Var x) _ =  [x]
showExpr' (Add l r) op = let
  x = showExpr' l Lo ++"+"++showExpr' r Lo
  in if op == Hi || op == HiDiv || op==LoSub 
     then "(" ++ x ++")"
     else x
showExpr' (Sub l r) op = let
  x = showExpr' l Lo ++"-"++showExpr' r LoSub
  in if op == Hi || op == HiDiv || op==LoSub 
     then "(" ++ x ++")"
     else x     
showExpr' (Mul l r) op = let
  x = showExpr' l Hi ++"*"++showExpr' r Hi
  in if op == HiDiv
     then "(" ++ x ++")"
     else x
showExpr' (Div l r) _ = showExpr' l Hi ++"/"++showExpr' r HiDiv
  • Extend class Show to be usable with our expressions.
    Video logo.png
instance (Show Expr) where
  show = showExpr
  • Create function derivation representing symbolic derivation of a given expression.
    Video logo.png
deriv :: Expr-> Char -> Expr
deriv :: Expr-> Char -> Expr
deriv (Num _) _ = (Num 0)     
deriv (Var x) y | x==y = (Num 1)
                | otherwise = (Num 0)
deriv (Add l r) x = Add (deriv l x) (deriv r x)                
deriv (Sub l r) x = Sub (deriv l x) (deriv r x)
deriv (Mul l r) x = Add (Mul (deriv l x) r) (Mul l (deriv r x))
deriv (Div l r) x = 
   Div
    (Sub (Mul (deriv l x) r) (Mul l (deriv r x)))
    (Mul r r)