Difference between revisions of "FP Laboratory 9"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
Consider following representation of expressions | Consider following representation of expressions | ||
+ | <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div> | ||
<syntaxhighlight lang="Haskell"> | <syntaxhighlight lang="Haskell"> | ||
data Expr = Num Int | data Expr = Num Int | ||
Line 12: | Line 13: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | * Create function eval that evaluates expresions. | + | * Create function eval that evaluates expresions. <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div> |
<syntaxhighlight lang="Haskell"> | <syntaxhighlight lang="Haskell"> | ||
eval :: Expr -> Int | eval :: Expr -> Int | ||
Line 29: | Line 30: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | * Create function showExpr that shows expression as a String. | + | * Create function showExpr that shows expression as a String. <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div> |
<syntaxhighlight lang="Haskell"> | <syntaxhighlight lang="Haskell"> | ||
showExpr :: Expr -> String | showExpr :: Expr -> String | ||
Line 64: | Line 65: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | * Extend class Show to be usable with our expressions. | + | * Extend class Show to be usable with our expressions. <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div> |
<div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | <div class="mw-collapsible mw-collapsed" data-collapsetext="Hide solution" data-expandtext="Show solution"> | ||
Line 74: | Line 75: | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | * Create function derivation representing symbolic derivation of a given expression. | + | * Create function derivation representing symbolic derivation of a given expression. <div style="float: right"> [[File:Video logo.png|80px|link=https://youtu.be/voiTk64SaQM]]</div> |
<syntaxhighlight lang="Haskell"> | <syntaxhighlight lang="Haskell"> | ||
deriv :: Expr-> Char -> Expr | deriv :: Expr-> Char -> Expr |
Revision as of 09:39, 29 October 2020
User defined data types and type classes
Consider following representation of expressions
data Expr = Num Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Char
deriving (Eq)
- Create function eval that evaluates expresions.
eval :: Expr -> Int
eval :: Expr -> Int
eval (Num x) = x
eval (Add l r) = (eval l) + (eval r)
eval (Sub l r) = (eval l) - (eval r)
eval (Mul l r) = (eval l) * (eval r)
eval (Div l r) = (eval l) `div` (eval r)
- Create function showExpr that shows expression as a String.
showExpr :: Expr -> String
showExpr :: Expr -> String
showExpr expr = showExpr' expr NoOp
data Operation = Hi | HiDiv | Lo | LoSub | NoOp deriving (Eq)
showExpr' :: Expr -> Operation -> String
showExpr' (Num x) _ = show x
showExpr' (Var x) _ = [x]
showExpr' (Add l r) op = let
x = showExpr' l Lo ++"+"++showExpr' r Lo
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Sub l r) op = let
x = showExpr' l Lo ++"-"++showExpr' r LoSub
in if op == Hi || op == HiDiv || op==LoSub
then "(" ++ x ++")"
else x
showExpr' (Mul l r) op = let
x = showExpr' l Hi ++"*"++showExpr' r Hi
in if op == HiDiv
then "(" ++ x ++")"
else x
showExpr' (Div l r) _ = showExpr' l Hi ++"/"++showExpr' r HiDiv
- Extend class Show to be usable with our expressions.
instance (Show Expr) where
show = showExpr
- Create function derivation representing symbolic derivation of a given expression.
deriv :: Expr-> Char -> Expr
deriv :: Expr-> Char -> Expr
deriv (Num _) _ = (Num 0)
deriv (Var x) y | x==y = (Num 1)
| otherwise = (Num 0)
deriv (Add l r) x = Add (deriv l x) (deriv r x)
deriv (Sub l r) x = Sub (deriv l x) (deriv r x)
deriv (Mul l r) x = Add (Mul (deriv l x) r) (Mul l (deriv r x))
deriv (Div l r) x =
Div
(Sub (Mul (deriv l x) r) (Mul l (deriv r x)))
(Mul r r)